Examples of the VC Dimension

prof. dr Arno Siebes

Algorithmic Data Analysis Group
Department of Information and Computing Sciences
Universiteit Utrecht
Recall: VC dimension

The previous time we introduced the VC dimension of a hypothesis class \mathcal{H} as:

The VC dimension of a set of hypotheses \mathcal{H} is the size of the largest set $C \subseteq X$ such that C is shattered by \mathcal{H}. If \mathcal{H} can shatter arbitrarily sized sets, its VC dimension is infinite.

Where a finite set is shattered by \mathcal{H} if

$$|\mathcal{H}_C| = 2^{|C|}$$

We now study the VC dimension of some finite classes, more in particular: classes of boolean functions.
Finite Hypothesis Classes

If a finite hypothesis class \mathcal{H} shatters a finite set C then

$$|\mathcal{H}| \geq |\mathcal{H}_C| = 2^{|C|}$$

This immediately implies that

$$VC(\mathcal{H}) \leq \log(|\mathcal{H}|)$$

Clearly, the VC dimension can be smaller

- consider threshold functions that can take thresholds in $\{1, \ldots, k\}$
- $|\mathcal{H}| = k$, while $VC(\mathcal{H}) = 1$

In other words,

- the difference between $VC(\mathcal{H})$ and $\log(|\mathcal{H}|)$ can be arbitrarily large
- but $\log(|\mathcal{H}|)$ is never the smallest
Monotone Monomials

Recall the class C_n of boolean expressions over n literals. A smaller class C_n^+ (sometimes denoted by M_n^+) consists of the monotone (positive) monomials

- no negations, just conjunctions of the variables

Clearly, a variable is either in such an expression or not. Hence,

$$|C_n^+| = 2^n$$

Hence, by the previous page:

$$VC \left(C_n^+\right) \leq \log (2^n) = n$$

But, as we noted on the previous page, it could be smaller, a lot smaller.

- however, it isn’t.

To prove that we are going to create a set of n elements that is shattered by C_n^+.
$\text{VC} \left(C_n^+ \right) = n$

Let S consist of all 0/1-vectors of length n that have exactly $n - 1$ 1’s and 1 0.

Denote by x_i that element of S that has 0 for the i-th coordinate.

- if $j = i : \pi_j(x_i) = 0$
- if $j \neq i : \pi_j(x_i) = 1$

Let $R \subseteq S$ be any subset of S. Define $h_R \in C_n^+$ as

- the conjunction of all variables u_j such that $x_j \not\in R$

Then we have:

$$h_R(x) = \begin{cases} 1 & \text{if } x \in R \\ 0 & \text{if } x \in S \setminus R \end{cases}$$

That is, we have a classifier for any $R \subseteq S$: S is shattered. Hence,

$$\text{VC} \left(C_n^+ \right) = n$$
How About C_n?

It is easy to see that

- $\text{VC}(C_1) = 2$

the monomials

- x and $\neg x$ will do that for you.

Moreover, since $C_n^+ \subset C_n : \text{VC}(C_n^+) \leq \text{VC}(C_n)$

- any set that can be shattered by C_n^+ can be shattered by C_n

So, it may appear that by allowing negations we increase the VC dimension, because we now have that

$$n \leq \text{VC}(C_n) \leq \log(|C_n|) = \log(3^n) = n \log(3)$$

But, we don’t

- except for the case $n = 1$

No set of size $n + 1$ can be shattered by C_n if $n \geq 2$
$\text{VC}(C_n) = n$

Let $S = \{s^1, \ldots, s^{n+1}\}$ be a set of $n + 1$, 0/1 vectors of length n, that is shattered by C_n

- define $S_i = S \setminus \{s^i\}$

Because S is shattered by C_n there exists a $m_i \in C_n$ such that

- $S_i = S \cap m_i$, thus, $\forall i, j : m_i(s^j) = 0 \iff i = j$ ($0 = \text{false}$)

But this means that:

- each s^i contains a component $s^i_{h(i)}$
- each m_i contains a literal $l_{k(i)}$
- such that $l_{k(i)}$ is false on $s^i_{h(i)}$, i.e., $l_{k(i)}(s^i_{h(i)}) = 0$

Given that there are only n variables

- at least 2 of these literals $l_{k(1)}, \ldots, l_{k(i+1)}$
- must refer to the same variable, say $l_{k(1)}$ and $l_{k(2)}$
- either $l_{k(1)} = l_{k(2)}$, then $l_{k(1)}(s^1_{h(1)}) = l_{k(1)}(s^2_{h(2)}) = 0$, i.e., $m_1(s^1) = m_1(s^2) = 0$. Contradiction
- or $l_{k(1)} = \neg l_{k(2)}$, then either $l_{k(1)}$ or $l_{k(2)}$ is false on s^3. Either $m_1(s^3) = 0$ or $m_2(s^3) = 0$. Again a contradiction
Denote by

- D^+_n the set of all disjunctions over at most n variables, again no negations
- D_n the set of disjunctions over at most n literals

Note that for $\phi \in C_n$ and $x \in \{0, 1\}^n$ we have

$$\phi(x) \leftrightarrow \neg \phi(\neg x)$$

That is we have a duality between C_n and D_n and similarly between C^+_n and D^+_n

By this duality we immediately have:

- $VC(D_n) = n$ and
- $VC(D^+_n) = n$

In the end, it is just consistently switching

- 1’s to 0’s and vice versa
Monotone Formulas

We have seen that both

- C_n^+, conjunctions of variables, has VC dimension n
- and D_n^+, disjunctions of variables, has VC dimension n

The natural follow up question is

- what happens if we allow both conjunctions and disjunctions
- but no negations

This is the class of monotone boolean formulas,

- sometimes denoted by M_n
- note, without a $+$; perhaps because allowing negations as well yields the class of all boolean functions
 - which we will discuss later

The problem is thus: determine $VC(M_n)$
Sperner’s Theorem

To compute the VC dimension of M_n we need a result from combinatorics known as Sperner’s Theorem.

Let X be a set of n elements

- a chain of subsets of X is a family of subsets A_i such that $\emptyset \subseteq A_1 \subset A_2 \subset \cdots \subset A_k \subseteq X$

- an antichain is a family of subsets F such that for any two elements $A, B \in F$:
 \[A \not\subset B \land B \not\subset A \]

Sperner: if F is an antichain of X, then

\[|F| \leq \binom{n}{\lfloor n/2 \rfloor} \]

Note, an antichain is also known as a Sperner family of subsets.
Maximal Chains

Without loss of generality we assume that $X = \{1, \ldots, n\}$. A maximal chain in X obviously has length $n + 1$

$$\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X$$

Such a maximal chain puts a total order on the elements of X

- the smallest element is the single element of A_1
- the one-but-smallest is the new element in A_2
- and so on and so on

Similarly, each total order on X defines a chain

- A_1 consists of the smallest element
- A_2 consists of the two smallest elements
- and so on and so on

That is, the total number of maximal chains equals the number of permutations: $n!$
Maximal Chains and Antichains

Let $A \subseteq X$, with $|A| = k$. A maximal chain that contains A

- i.e., $A = A_k$ in that chain

consists of

- A maximal chain for the set A
- followed by a chain for $X \setminus A$
 - each set in the latter chained is extended by the union with A,
 of course

This means that there are $k!(n - k)!$ maximal chains containing A.

Note that if F is an antichain, than any chain can contain at most
one element of F

- If A and B are in a chain, then either $A \subset B$ or $B \subset A$
- If A and B are in F, then both $A \not\subset B$ and $B \not\subset A$
Proving Sperner

Recall that F is an antichain. The number of maximal chains that contain an element of F (and thus exactly 1) is

$$\sum_{A \in F} |A|!(n - |A|)! = \sum_{A \in F} n! \frac{|A|!(n-|A|)!}{n!} = n! \sum_{A \in F} \frac{1}{|A|}$$

Because there are in total $n!$ maximal chains, we have

$$\sum_{A \in F} \frac{1}{|A|} \leq 1$$

For binomial coefficients, the middle ones are the largest, hence

$$\sum_{A \in F} \frac{1}{\left\lfloor \frac{n}{2} \right\rfloor} \leq \sum_{A \in F} \frac{1}{|A|} \leq 1$$

Since

$$\sum_{A \in F} \frac{1}{\left\lfloor \frac{n}{2} \right\rfloor} = \frac{|F|}{\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}}$$

We have that

$$|F| \leq \binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$$
Back to Monotone Formula’s

Let S be the set of all assignments to $\{x_1, \ldots, x_n\}$ such that exactly $\lceil n/2 \rceil$ variables are mapped to 1 (true).

Clearly, $|S| = \binom{n}{\lceil n/2 \rceil}$

- this is the definition of $\binom{n}{k}$

Now choose some 0/1 labelling on S

- i.e., choose an arbitrary function $g : S \rightarrow \{0, 1\}$
- we need to show that M_n contains that function

Define T (from true) by

$$T = \{A \in S \mid g(A) = 1\}$$

We need to construct a monotone formula f such that

$$f(A) = 1 \iff A \in T \iff g(A) = 1$$
Two Special Cases and f

g maps all variables to 0 (false)

- iff $S = \emptyset$

Clearly, the function $\text{false} \in M_n$. Hence we can assume $S \neq \emptyset$

If $n = 1$, we have only 1 variable which is either mapped to 1 or to 0

- a function that is obviously in M_1

Hence we may assume that $n > 1$

Let f be the monotone function

\[
f(z_1, \ldots, x_n) = \bigvee_{A \in T} \bigwedge_{i: A(x_i) = 1} x_i
\]

Given the assumptions made above, the disjunction isn’t empty and neither is the conjunction
\[VC(M_n) \geq \binom{n}{\lfloor n/2 \rfloor} \]

Let \(B \in T \), then the monomial

\[\bigwedge_{i:B(x_i)=1} x_i \]

is mapped to 1 by \(B \) and, thus, by \(f \)

For \(B \in S \setminus T \), note that each monomial

\[\bigwedge_{i:A(x_i)=1} x_i \]

in \(f \) assigns 1 to exactly \(\lfloor n/2 \rfloor \) variables and 0 to the rest. Since \(B \in S \setminus T \)

- it assigns 0 to at least one of these \(\lfloor n/2 \rfloor \) variables
Which means that \(f \) assigns 0 to \(B \),

In other words, \(M_n \) shatters \(S \) which has \(\binom{n}{\lfloor n/2 \rfloor} \) elements. Hence

\[VC(M_n) \geq \binom{n}{\lfloor n/2 \rfloor}. \]
\[VC(M_n) \leq \binom{n}{\lfloor n/2 \rfloor} \]

Let \(S \) be a set of assignments such that \(|S| > \binom{n}{\lfloor n/2 \rfloor} \). For each \(A \in S \) define:

\[V_A = \{ i \mid A(x_i) = 1 \} \]

Because of the size of \(S \), Sperner’s theorem tells us the \(V_A \) cannot be an antichain. Hence, there are \(A_1, A_2 \in S \) such that

\[A_1(x_i) = 1 \rightarrow A_2(x_i) = 1 \]

Since the functions in \(M_n \) are monotone, this means:

\[\forall f \in M_n : f(A_1) = 1 \rightarrow f(A_2) = 1 \]

In other words a labelling that maps \(A_1 \) to 1 and \(A_2 \) to 0 cannot be constructed in \(M_n \). In other words: \(VC(M_n) \leq \binom{n}{\lfloor n/2 \rfloor} \) Hence

\[VC(M_n) = \binom{n}{\lfloor n/2 \rfloor} \]
Adding Negations

In the case of C_n and D_n we saw that
- adding negation did not increase the VC dimension

So, it is reasonable to expect that
- the VC dimension of all boolean functions is the same as that of M_n

This is, however,

\textit{not true!}

The VC dimension of that set of hypotheses is strictly bigger.

Computing the exact dimension is pretty hard
- in fact, I am not aware of an exact expression

Bounding the dimension is easier
- for k-DNF we can compute a Θ bound

For the general case, we need some extra machinery. But first we look at k-DNF
Recall that k-DNF consists of disjunctions

- each component (disjunct, consisting of conjunctions) is the conjunction of at most k literals.

Computing the VC dimension exactly isn’t easy, giving a bound is:

For $n, k \in \mathbb{N}$, let $D_{n,k}$ be the set of k-DNF functions (expressions) over $\{0,1\}^n$ (i.e., in n variables). Then $VC(D_{n,k}) = \Theta(n^k)$

Recall:

- $g(n) = O(f(n))$ if there exist c, n_0 such that $\forall n \geq n_0 : g(n) \leq cf(n)$ (i.e., upper bound)
- $g(n) = \Omega(f(n))$ if there exist c, n_0 such that $\forall n \geq n_0 : g(n) \geq cf(n)$ (i.e., lower bound)
- $g(n) = \Theta(f(n))$ if $g(n) = O(f(n))$ and $g(n) = \Omega(f(n))$
\[VC(D_{n,k}) = O(n^k) \]

The number of monomials of degree at most \(k \) (not identical false or empty) is:

\[
\sum_{i=1}^{k} \binom{n}{i} 2^i = O(n^k) \text{ for fixed } k
\]

\((2^i, \text{ since the literals you choose are either a variable or its negation})\).

Each \(k \)-DNF formula is the disjunction of a set of such terms

\[|D_{n,k}| = 2^{O(n^k)} \]

Which means:

\[VC(D_{n,k}) = O(n^k) \]
\[VC(D_{n,k}) = \Omega(n^k) \]

Let \(S \subseteq \{0, 1\}^n \) consist of those vectors
\>
that have exactly \(k \) entries equal to 1

Let \(R \subseteq S \)
\>
for each \(y = (y_1, \ldots, y_n) \in R \)
\>
form the term \(t_y \) as the conjunction of the literals \(u_i \) such that \(y_i = 1 \)
\>
\(t_y \) has exactly \(k \) literals and
\>
\(\forall z \in S : t_y(z) = 1 \iff z = y \)

Hence,
\[\bigvee_{y \in R} t_y \text{ is a classifier for } R \]

That is, \(S \) is shattered by \(D_{n,k} \). Since \(|S| = \binom{n}{k} = \Omega(n^k) \) (for fixed \(k \)). We have:
\[VC(D_{n,k}) = \Omega(n^k) \]
An Observation

From the results we have reached – perhaps even more from the proofs of these results – one sees that

- the richer the model class, the higher the VC dimension.

This is, of course, completely logical as we have by definition that

\[\mathcal{H}_1 \subseteq \mathcal{H}_2 \rightarrow \text{VC}(\mathcal{H}_1) \leq \text{VC}(\mathcal{H}_2) \]

This observation, however, hints at a way to find good models:

- start with a very simple model class and pick the best hypothesis
- if that is good, you are done. If not take a slightly richer class

This line of thought gives rise to structural risk minimization

- rather than empirical risk minimization

which we’ll later in this course
The Growth Function

Exact bounds for larger classes of boolean functions are not known. We do, however, have a more general result which is based on the growth function.

The VC dimension only looks at the largest set that \mathcal{H} can shatter. The growth function $\tau_{\mathcal{H}} : \mathbb{N} \rightarrow \mathbb{N}$ looks much broader to the classifications \mathcal{H} contains:

$$\tau_{\mathcal{H}}(m) = \max_{C \subset X : |C|=m} |\mathcal{H}C|$$

That is,

$$\tau_{\mathcal{H}}(m) = \max_{C \subset X : |C|=m} |\{f(c_1), \ldots, f(c_m)\}_{f \in \mathcal{H}}|$$

each $f \in \mathcal{H}$ produces a 0/1 vector of length m and $\tau_{\mathcal{H}}$ tells you

- how many different vectors \mathcal{H} can produce maximally
Growth Above VC

Clearly, if \(m \leq d = \text{VC}(\mathcal{H}) \) then \(\tau_{\mathcal{H}}(m) = 2^m \)

- if there is a \(d \) sized set that \(\mathcal{H} \) can shatter, the for each smaller integer there is also a set that \(\mathcal{H} \) can shatter
- restrict (actually project) the shattering to the lower dimensional space.

It is more instructive what happens if \(m > d \). The fact that \(\mathcal{H} \) cannot shatter a set of size \(m \)

- doesn’t mean that it is completely useless for sets of that size
- It might, e.g., classify almost always almost correctly
- or it might do a horrible job for any \(m \) sized set.

Sauer’s Lemma tells us what to expect above \(d \).

- and for Sauer we need Pajor
Pajor’s Lemma

Let \mathcal{H} be any hypothesis class with $\text{VC}(\mathcal{H}) = d < \infty$. For any $C = \{c_1, \ldots, c_m\}$

$$|\mathcal{H}_C| \leq |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}|$$

To prove this by induction, first note that for $m = 1$, either both sides are 1 or both are 2

- the empty set is shattered by all hypothesis classes.

Now assume that the inequality holds for all $k < m$

- Let $C = \{c_1, c_2, \ldots, c_m\}$ and
- let $C' = \{c_2, \ldots, c_m\}$

Define the two sets

$$Y_0 = \{(y_2, \ldots, y_m) \mid (0, y_2, \ldots, y_m) \in \mathcal{H}_C \lor (1, y_2, \ldots, y_m) \in \mathcal{H}_C\}$$

$$Y_1 = \{(y_2, \ldots, y_m) \mid (0, y_2, \ldots, y_m) \in \mathcal{H}_C \land (1, y_2, \ldots, y_m) \in \mathcal{H}_C\}$$

Note that $|\mathcal{H}_C| = |Y_0| + |Y_1|$, because Y_1 contains those vectors of \mathcal{H}_C that generate a vector in Y_0 twice rather than once.
Proof Part 1

Since \(Y_0 = \mathcal{H}_{C'} \) we have by the induction assumption that

\[
|Y_0| = |\mathcal{H}_{C'}| \leq |\{ B \subseteq C' \mid \mathcal{H} \text{ shatters } B\}|
\]
\[
= |\{ B \subseteq C \mid c_1 \notin B \land \mathcal{H} \text{ shatters } B\}|
\]

Next, define \(\mathcal{H}' \) to contain pairs of hypotheses that agree on \(C' \) but disagree on \(c_1 \):

\[
\mathcal{H}' = \{ h \in \mathcal{H} \mid \exists h' \in \mathcal{H} : (1 - h'(c_1), h_2(c_2), \ldots, h_m(c_m)) = (h(c_1), h(c_2), \ldots, h_m(c_m))\}
\]

Note that

- if \(\mathcal{H}' \) shatters \(B \subseteq C' \) it also shatters \(B \cup \{c_1\} \) and vice versa
- \(Y_1 = \mathcal{H}'_{C'} \)

So, by induction we can compute \(|Y_1| \)
Proof Part 2

Because $|C'| < m$ our induction assumption yields

$$|Y_1| = |\mathcal{H}'_{C'}| \leq |\{B \subseteq C' \mid \mathcal{H}' \text{ shatters } B\}|$$
$$= |\{B \subseteq C' \mid \mathcal{H}' \text{ shatters } B \cup \{c_1\}\}|$$
$$= |\{B \subseteq C \mid c_1 \in B \land \mathcal{H}' \text{ shatters } B\}|$$
$$\leq |\{B \subseteq C \mid c_1 \in B \land \mathcal{H} \text{ shatters } B\}|$$

Bringing all intermediate results together gives us:

$$|\mathcal{H}_C| = |Y_0| + |Y_1|$$
$$\leq |\{B \subseteq C \mid c_1 \notin B \land \mathcal{H} \text{ shatters } B\}|$$
$$+ |\{B \subseteq C \mid c_1 \in B \land \mathcal{H} \text{ shatters } B\}|$$
$$= |\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}|$$

Which was to be proven.
Sauer’s Lemma

Let \mathcal{H} be any hypothesis class with $\text{VC}(\mathcal{H}) = d < \infty$.

- $\forall m : \tau_{\mathcal{H}}(m) \leq \sum_{i=0}^{d} \binom{m}{i}$
- if $m \geq d : \tau_{\mathcal{H}}(m) < (em/d)^d$

Proof: Since $\text{VC}(\mathcal{H}) = d$, \mathcal{H} shatters no set with more than d elements. Thus

$$|\{B \subseteq C \mid \mathcal{H} \text{ shatters } B\}| \leq \sum_{i=0}^{d} \binom{m}{i}$$

$$\sum_{i=0}^{d} \binom{m}{i} = \sum_{i=0}^{d} \binom{m}{i} \left(\frac{m}{d}\right)^i \left(\frac{d}{m}\right)^i \leq \left(\frac{m}{d}\right)^d \sum_{i=0}^{d} \binom{m}{i} \left(\frac{d}{m}\right)^i$$

$$\leq \left(\frac{m}{d}\right)^d \sum_{i=0}^{m} \binom{m}{i} \left(\frac{d}{m}\right)^i = \left(\frac{m}{d}\right)^d \left(1 + \frac{d}{m}\right)^m < \left(\frac{em}{d}\right)^d$$

For last inequality use $x > 0 \rightarrow (1 + x/m)^m < e^x$
A Simple Consequence

Let \mathcal{H} be a finite hypothesis set with at least two hypothesis, defined on a finite domain X

- unfortunately, 1 hypothesis isn’t going to work because:

Two hypothesis $h_1, h_2 \in \mathcal{H}$ are different if

- $\exists x \in X : h_1(x) \neq h_2(x)$

That is, h_1 and h_2 are different if they are different classifications on the complete domain X

- there are, by definition, $\tau_{\mathcal{H}}(|X|)$ such classifications.

That is:

$$\tau_{\mathcal{H}}(|X|) = |H|$$

By Sauer’s lemma we have $|H| < \left(\frac{e|X|}{d} \right)^d$. Which means that

$$VC(\mathcal{H}) \geq \frac{\log |\mathcal{H}|}{n + \log e}$$
Back to Boolean Functions

If $VC(\mathcal{H}) \geq 3$ the inequality of the previous slide can be improved to $VC(\mathcal{H}) \geq \frac{\log |\mathcal{H}|}{n}$.

Hence, for any large enough class B_n of boolean functions on $\{0, 1\}^n$ we have that

$$\frac{\log |B|}{n} \leq VC(B_n) \leq \log |B|$$

Clearly, these bounds are much weaker than the ones we had for M_n

but, then again, we talk about (almost) arbitrary sets here

Until now we studied classes of functions from $\{0, 1\}^n$ to $\{0, 1\}$. An obvious generalization is to study sets of functions

from \mathbb{R}^n to $\{0, 1\}$.

We look at one such class, polynomials on \mathbb{R}
Polynomials as Classifiers

Recall how we saw lines and hyperplanes as classifiers

- simply by distinguishing the half spaces above and below the line/hyper plane

For polynomials we can do the same. First we define the set of polynomials of degree at most \(n \) by

\[
P_n = \sum_{i=0}^{n} a_i x^i
\]

for \(a_i \in \mathbb{R} \). Next, for any \(p \in P_n \) define the function \(p_+ : \mathbb{R} \rightarrow \{0, 1\} \) by

\[
p_+(x) = \begin{cases}
1 & \text{if } f(x) > 0 \\
0 & \text{if } f(x) \leq 0
\end{cases}
\]

The set of all these classifiers is known as \(\text{pos}(P_n) \) which we denote by \(P_n^{>0} \). The question now is: determine \(VC(P_n^{>0}) \)?
The Intuition

The fundamental theorem of algebra tells us that over the complex numbers, a polynomial of degree \(n \) can be written as

\[
\beta \prod_{i=1}^{n} (x - \alpha_i) \quad \alpha_i, \beta \in \mathbb{C}
\]

In other words, the graph of a real valued degree \(n \) polynomial

- crosses the \(x \)-axis at most \(n \) times

Each such crossing

- switches the classification from 1 to 0 or vice versa

Hence we can shatter at most \(n + 1 \) points in \(\mathbb{R} \)

Each labelling of \(n + 1 \) points on the \(x \)-axis shows a number of adjacent change pairs \((1, 0)\) or \((0, 1)\)

- construct your polynomial such that the roots are between the two points of a change pair

This will give you a separating polynomial
Making this intuition precise using the language of the graphs of polynomials involves lots of infuriating bookkeeping details

▶ wiggly lines are hard to keep under control

To make life easier

▶ for those who know some linear algebra

we map (embed) our data into a higher dimensional space

▶ and stretch the wiggly line in a linear structure: a hyperplane

▶ for the cognoscenti, we are using the ”kernel trick”, well known from SVMs, with a polynomial kernel

The mapping we use is:

\[\phi : z \rightarrow (1, z, z^2, \ldots, z^n) \]

mapping \(c \in \mathbb{R} \) to the vector \((1, c, c^2, \ldots, c^n)^T \in \mathbb{R}^{n+1} \)
Using ϕ

A polynomial p is given by

$$p = \sum_{i=0}^{n} a_i x^i$$

We can rewrite this as a dot product by

$$p = \sum_{i=0}^{n} a_i x^i = (a_0, a_1, \ldots, a_n) \cdot (1, x, x^2, \ldots, x^n)$$

The second expression should remind you of a hyperplane, perhaps all the more when evaluated on a particular instance

$$p(c) = (a_0, a_1, \ldots, a_n) \cdot (1, c, c^2, \ldots, c^n) = (a_0, a_1, \ldots, a_n) \cdot \phi(c) = \phi(p)(\phi(c))$$

where $\phi(p)$ denotes the function on \mathbb{R}^{n+1}
Polynomials, Hyperplanes, and Thresholds

More in particular, if we turn from P_n to $P_n^{>0}$

- i.e., we turn from functions to classifiers

We see that

- $p(c) > 0$ on \mathbb{R} translates to $\phi(p)(\phi(c)) > 0$ on \mathbb{R}^{n+1}

Now, the expression: $\phi(p)$ denotes both

- a threshold function on \mathbb{R}^{n+1}
- and a hyperplane on \mathbb{R}^n

That is, we have a 1-1 correspondence between

- polynomial classifiers and
- threshold/hyperplane classifiers

This correspondence helps us to prove our results ”linearly”.
Let $S \subseteq \mathbb{R}^n$ be a set, that is shattered by $P_n^{>0}$. That is, for every $S^+ \subseteq S$ there exists a $p_+ \in P_n^{>0}$ such that

$\blacktriangleright \quad p_+(s) = 1$ if $s \in S^+$
$\blacktriangleright \quad p_+(s) = 0$ if $s \in S \setminus S^+$

In other words, there is a $p \in P_n$ such that

$\blacktriangleright \quad \sum_{i=0}^n a_i s^i > 0$ if $s \in S^+$
$\blacktriangleright \quad \sum_{i=0}^n a_i s^i \leq 0$ if $s \in S \setminus S^+$

Written in the language of dot products this says that there is a vector $a = (a_1, \ldots, a_n)$ and a constant a_0 such that

$\blacktriangleright \quad (a_1, \ldots, a_n) \cdot (s, s^2, \ldots, s^n) + a_0 > 0$ if $s \in S^+$
$\blacktriangleright \quad (a_1, \ldots, a_n) \cdot (s, s^2, \ldots, s^n) + a_0 \leq 0$ if $s \in S \setminus S^+$

Since $z \to (z, z^2, \ldots, z^n)$ simply maps $\mathbb{R} \to \mathbb{R}^n$, we have a separating hyperplane on \mathbb{R}^n. Hence, $|S| \leq n + 1$
Independent Vectors are Shattered

To prove that $\text{VC}(P_{n}^{>0}) \geq n + 1$, we first prove that a set $\{x_1, \ldots, x_n\} \subset \mathbb{R}^n$ of independent vectors is shattered by threshold functions on \mathbb{R}^n.

Let A be the $n \times n$ matrix with the x_i vectors as columns. This is an invertible matrix

- otherwise the x_i would not be independent

Let v be any of the $2^n - 1/1$ vectors that denote the labellings of the x_i

- then, the matrix equation $Aw = v$ has a unique solution

- $w = A^{-1}v$

The vector w gives you the threshold function that shatters the x_i for labelling v.

Hence, if we can prove that there exists a set $\{x_0, \ldots, x_n\} \subset \mathbb{R}$ that ϕ maps to a set of independent vectors in \mathbb{R}^{n+1} we are done.
P_n is a Vector Space

For that we need:

Let $f, g \in P_n$ and $\lambda \in \mathbb{R}$. Then clearly

\[f + g = \sum_{i=0}^{n} (a_i + b_i) x^i \in P_n \] and
\[\lambda f = \sum_{i=0}^{n} (\lambda a_i) x^i \in P_n \]

In other words, P_n is a vector space over \mathbb{R}

Moreover, P_n is a $n + 1$-dimensional vector space with base

\[\{1, x, \ldots, x^n\} \]

For, clearly, these functions are linearly independent

\[[\forall x \in \mathbb{R} : \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \cdots + \lambda_n x^n = 0] \iff [\forall i : \lambda_i = 0] \]

and every element of P_n can (by definition) be written as a linear combination of these functions
$n + 1$ Independent Vectors

To see that ϕ creates $n + 1$ independent vectors we argue from contradiction.

Assume that for every $X = \{x_0, \ldots, x_n\} \subset \mathbb{R}$ we have that the set of vectors $\phi(X) = \{\phi(x_0), \ldots \phi(x_n)\}$ is dependent

- then the vector subspace spanned by $\{\phi(x) \mid x \in \mathbb{R}\}$ of \mathbb{R}^{n+1} has at most dimension n
- that is, it is contained in some hyperplane
- this means that there are λ_i, not all equal to 0, such that

$$\forall x \in \mathbb{R} : \sum_{i=0}^{n} \lambda_i(\phi(x)) = \sum_{i=0}^{n} \lambda_i x^i = 0$$

But that contradicts that $\{1, x, \ldots, x^n\}$ is a base.
$VC(P_n^{>0}) \geq n + 1$

We have:

- there exists a $X = \{x_0, \ldots, x_n\} \subset \mathbb{R}$
- such that $\phi(X) = \{\phi(x_0), \ldots, \phi(x_n)\}$ is independent
- hence, $\phi(X)$ is shattered by threshold functions
- hence, X is shattered by the corresponding polynomials

In other words, $VC(P_n^{>0}) \geq n + 1$. We already had that $VC(P_n^{>0}) \leq n + 1$, hence we have

$$VC(P_n^{>0}) = n + 1$$

For the more general case, having more variables x_1, \ldots, x_m see exercise 6.12 in the book
A Simple Consequence

The fact that $\text{VC}(P_n^{>0}) = n + 1$ implies that the set of all polynomials

$$P = \bigcup_{n=1}^{\infty} P_n$$

has $\text{VC}(P) = \infty$

- if $\text{VC}(P)$ would be finite, say k we have a contradiction with $\text{VC}(P_k) = k + 1$

Hence, we cannot simply learn the best fitting polynomial using the ERM rule

- recall that sets with infinite VC dimension are not PAC learnable

For that one needs a more subtle approach

- Structural Risk Minimization

Which we mentioned before and is discussed later in this course.