Lecture 2 - “Whitted”

Welcome!

\[I(x, x') = g(x, x') \left[\epsilon(x, x') + \int_s \rho(x, x', x'') I(x', x'') dx'' \right] \]
Today's Agenda:

- Introduction: Appel
- Whitted
- Cook

Idea: use rays to find geometry and shadows.

“Graphics” for games in 1964:
https://en.wikipedia.org/wiki/The_Sumerian_Game

Idea: use rays to find geometry and shadows.
Recap

Plane: $P \cdot \vec{N} + d = 0$
Ray: $P(t) = O + t\vec{D}$

Substituting for $P(t)$, we get

$$(O + t\vec{D}) \cdot \vec{N} + d = 0$$
$$t = -(O \cdot \vec{N} + d) / (\vec{D} \cdot \vec{N})$$

$P = O + t\vec{D}$

Sphere: $(P - C) \cdot (P - C) - r^2 = 0$

Substituting for $P(t)$, we get

$$(O + t\vec{D} - C) \cdot (O + t\vec{D} - C) - r^2 = 0$$
$$\vec{D} \cdot \vec{D} t^2 + 2\vec{D} \cdot (O - C) t + (O - C)^2 - r^2 = 0$$

$$at^2 + bt + c = 0 \rightarrow t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = \vec{D} \cdot \vec{D}$$
$$b = 2\vec{D} \cdot (O - C)$$
$$c = (O - C) \cdot (O - C) - r^2$$
Ray: $P(t) = O + t\vec{D}$
Today’s Agenda:

- Introduction: Appel
- Whitted
- Cook
An Improved Illumination Model for Shaded Display

In 1980, “State of the Art” consisted of:

- Rasterization
- Shading: either diffuse \((N \cdot L)\) or specular \(((N \cdot H)^n)\), both not taking into account fall-off (Phong)
- Reflection, using environment maps (Blinn & Newell *)
- Stencil shadows (Williams **)

An Improved Illumination Model for Shaded Display

In 1980, “State of the Art” consisted of:

- **Rasterization**
- **Shading:** either diffuse \((N \cdot L)\) or specular \(((N \cdot H)^n \)\), both not taking into account fall-off (Phong)
- **Reflection,** using environment maps (Blinn & Newell)
- **Stencil shadows** (Williams)

Goal:
- Solve reflection and refraction

Improved model:
- Based on classical ray optics
An Improved Illumination Model for Shaded Display*

Physical basis of Whitted-style ray tracing:

Light paths are generated (backwards) from the camera to the light sources, using rays to simulate optics.

```
Color Trace( ray r )
    I, N, mat = NearestIntersection( scene, r )
    return mat.color * DirectIllumination( I, N )
```

An Improved Illumination Model for Shaded Display

Color Trace(ray r)

\[I, \vec{N}, \text{mat} = \text{NearestIntersection}(\text{scene}, r) \]

\[\text{return mat.color * DirectIllumination(I, \vec{N})} \]

Direct illumination:

Summed contribution of *unoccluded* point light sources, taking into account:

- Distance to I
- Angle between \(\vec{L} \) and \(\vec{N} \)
- Intensity of light source

Note that this requires a ray per light source.
An Improved Illumination Model for Shaded Display

Color Trace(ray r)

\[I, \vec{N}, \text{mat} = \text{NearestIntersection(scene, r)} \]

if (mat == DIFFUSE)

\[\text{return mat.color * DirectIllumination}(I, \vec{N}) \]

if (mat == MIRROR)

\[\text{return mat.color * Trace}(I, \text{reflect}(r.\vec{D}, \vec{N}) \)

Indirect illumination:

For perfect specular object (mirrors) we extend the primary ray with an extension ray:

- We still modulate transport with the material color
- We do not apply \(\vec{N} \cdot \vec{L} \)
- We do not calculate direct illumination
Reflection

Given a ray direction \vec{D} and a normalized surface normal \vec{N}, the reflected vector $\vec{R} = \vec{D} - 2(\vec{D} \cdot \vec{N})\vec{N}$.

Derivation:

$\vec{V} = \vec{N}(\vec{D} \cdot \vec{N})$
$\vec{U} = \vec{D} - \vec{V}$
$\vec{R} = \vec{U} + (-\vec{V})$
$\vec{R} = \vec{D} - \vec{N}(\vec{D} \cdot \vec{N}) - \vec{N}(\vec{D} \cdot \vec{N})$
$\vec{R} = \vec{D} - 2(\vec{D} \cdot \vec{N})\vec{N}$
Question 1: For direct illumination, we take into account:

- Material color
- Distance to light source
- \(\vec{N} \cdot \vec{L} \)

Why?

Question 2: We use the summed contribution of all light sources.

Is this correct?

Question 3: Why do we not sample the light sources for a pure specular surface? *(can you cast a shadow on a bathroom mirror?)*

Question 4: Show geometrically that, for normalized vectors \(\vec{D} \) and \(\vec{N} \), \(\vec{R} = \vec{D} - 2(\vec{D} \cdot \vec{N})\vec{N} \) yields a normalized vector.
An Improved Illumination Model for Shaded Display

Handling partially reflective materials:

```
Color Trace( ray r )
I, N, mat = NearestIntersection( scene, r )
s = mat.specularity
D = 1 - mat.specularity
return mat.color * (s * Trace( ray( I, reflect( r.D, N ) ) ) +
D * DirectIllumination( I, N ))
```

Note: this is not efficient. (why not?)
An Improved Illumination Model for Shaded Display

Dielectrics

```python
Color Trace( ray r )
I, \vec{N}, mat = NearestIntersection( scene, r )
if (mat == DIFFUSE)
    return mat.color * DirectIllumination( I, \vec{N} )
if (mat == MIRROR)
    return mat.color * Trace( I, reflect( r.\vec{D}, \vec{N} )
if (mat == GLASS)
return mat.color *
```

Whitted
Dielectrics

The direction of the transmitted vector \(\vec{T} \) depends on the refraction indices \(n_1, n_2 \) of the media separated by the surface. According to Snell’s Law:

\[
n_1 \sin \theta_1 = n_2 \sin \theta_2
\]

or

\[
\frac{n_1}{n_2} \sin \theta_1 = \sin \theta_2
\]

Note: left term may exceed 1, in which case \(\theta_2 \) cannot be computed. Therefore:

\[
\frac{n_1}{n_2} \sin \theta_1 = \sin \theta_2 \iff \sin \theta_1 \leq \frac{n_2}{n_1} \Rightarrow \theta_{\text{critical}} = \arcsin \left(\frac{n_2}{n_1} \sin \theta_2 \right)
\]
Whitted
https://en.wikipedia.org/wiki/Snell%27s_window
Dielectrics

\[
\frac{n_1}{n_2} \sin \theta_1 = \sin \theta_2 \iff \sin \theta_1 \leq \frac{n_2}{n_1}
\]

\[k = 1 - \left(\frac{n_1}{n_2} \right)^2 \left(1 - \cos \theta_1^2 \right)\]

\[\vec{T} = \begin{cases} TIR, & f o r \ k < 0 \\ \frac{n_1}{n_2} \vec{D} + \vec{N} \left(\frac{n_1}{n_2} \cos \theta_1 - \sqrt{k} \right), & f o r \ k \geq 0 \end{cases}\]

Note: \(\cos \theta_1 = \vec{N} \cdot -\vec{D}\), and \(\frac{n_1}{n_2}\) should be calculated only once.

* For a full derivation, see http://www.flipcode.com/archives/reflection_transmission.pdf
Dielectrics

A typical dielectric transmits \textit{and} reflects light.
Dielectrics

A typical dielectric transmits and reflects light.

Based on the Fresnel equations, the reflectivity of the surface for non-polarized light is formulated as:

$$F_r = \frac{1}{2} \left(\frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t} \right)^2 + \left(\frac{n_1 \cos \theta_t - n_2 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i} \right)^2$$

Where: $\cos \theta_t = \sqrt{1 - \left(\frac{n_1}{n_2} \sin \theta_i \right)^2}$
Dielectrics

\[F_r = \ldots \]

Based on the law of conservation of energy:

\[F_t = 1 - F_r \]
Whitted

Ray Tracing

World space

- Geometry
- Eye
- Screen plane
- Screen pixels
- Primary rays
- Intersections
- Point light
- Shadow rays

Light transport

- Extension rays

Light transport
Ray Tree

Using Whitted-style ray tracing, hitting a surface point may spawn:

- a shadow ray for each light source;
- a reflection ray;
- a ray transmitted into the material.

The reflected and transmitted rays may hit another object with the same material.

➔ A single primary ray may lead to a very large number of ray queries.
Question 5: imagine a scene with several point lights and dielectric materials. Considering the law of conservation of energy, what can you say about the energy transported by each individual ray?
Beer’s Law
Beer’s Law

Light travelling through a medium loses intensity due to absorption.

The intensity $I(d)$ that remains after travelling d units through a substance with absorption a is:

$$I(d) = I(0)e^{-\ln(a)d}$$

In pseudocode:

$I.r *= \exp(-a.r \times d);$
$I.g *= \exp(-a.g \times d);$
$I.b *= \exp(-a.b \times d);$
A Whitted-style ray tracer implements the following optical phenomena:

- Direct illumination of multiple light sources, taking into account visibility and distance attenuation.
- A shading model: $N \cdot L$ for diffuse.
- Pure specular reflections, with recursion.
- Dielectrics, with Fresnel, with recursion.
- Beer’s Law.

The ray tracer supports any primitive for which a ray/primitive intersection can be determined.
Today's Agenda:

- Introduction: Appel
- Whitted
- Cook
'Distributed Ray Tracing'

Whitted-style ray tracing does not handle glossy reflections, depth of field, motion blur.
Cook et al.*:

Replace point sampling by integrals:

- Perform anti-aliasing by integrating over the pixel
- Add motion blur by integrating over time
- Calculate depth of field by integrating over the aperture.

Today’s Agenda:

- Introduction: Appel
- Whitted
- Cook
INFOMAGR – Advanced Graphics
Jacco Bikker - November 2021 – February 2022

END of “Whitted”
next lecture: “Acceleration Structures”