CNF-Satisfiability: SAT

- **Input:** Expression over Boolean variables in conjunctive normal form (CNF).
 - “and” of clauses;
 - each clause “or” of variables or negations (x_i or not(x_j))

- **Question:** Is the expression satisfiable?
 I.e., can we give each variable a value (true or false) such that the expression becomes true?
Cook-Levin theorem

Theorem: CNF-Satisfiability is NP-complete.

- Most well known is Cook’s proof, using Turing machine characterization of NP.
- It design a Turing machine that verifies yes-Instances of SAT
Lemma (key in the proof)

1. Let $P' \leq_p P$ and let P' be NP-complete. Then P is NP-hard.

2. Let $P' \leq_p P$ and let P' be NP-complete, and $P \in \text{NP}$. Then P is NP-complete.
Proving problems NP-complete: General recipe for a reduction

Suppose that you want to show NP-completeness of problem B;
1. Show that B belongs to the class NP.
2. Assume that you know that problem A is NP-complete. Show that A is reducible to B: $A \leq_p B$.
 - Take an arbitrary instance I of problem A.
 - Indicate how you can construct a special instance $f(I)$ of problem B on basis of the instance of A that you selected: the answers to the instance of A and the special instance of B must be equal.
 - This transformation (or construction) must be possible in polynomial time.
Reduction: first example

- the **Subset sum** problem
 - Given n non-negative integral values $a_1, a_2, \ldots a_n$ and a nonnegative integer B does there exist a subset S of the index-set $\{1, 2, \ldots, n\}$, such that $\sum_{j \in S} a_j = B$

- To prove: **Subset sum is NP-complete**

- the **Partition** problem
 - Given n non-negative integral values $a_1, a_2, \ldots a_n$ does there exist a subset S of the index-set $\{1, 2, \ldots, n\}$, such that $\sum_{j \in S} a_j = \frac{1}{2} \sum_{j=1}^{n} a_j$

- Suppose that we know that the Partition problem is NP-complete;
Proof Subset sum is NP-complete

Subset sum is in \textbf{NP}:
- Input size $O(n \log B)$.
- A solution leading to yes is a subset of \{1,2,\ldots,n\}. Can be encoded in polynomial time.
- Checking if a solution leads to yes is adding the included numbers a_i and comparing to B: polynomial.

Reduction from \textit{Partition}.
- Let $a_1, a_2, \ldots a_n$ an instance from Partition. Construct an instance from Subset sum with the same values $a'_i = a_i \forall i$ and $B = \frac{1}{2} \sum_{j=1}^{n} a_j$.
- We have yes in Partition if and only if we have yes in Subset sum.
- Transformation can be performed in polynomial time.
3-SAT

3-Sat is the special case of CNF-Satisfiability where each clause has exactly three literals.

Lemma: CNF-Satisfiability \(\leq_p\) 3-Sat

- Clauses with one or two literals:
 - Use two extra variables \(p\) and \(q\).
 - Replace \((x \lor y)\) by \((x \lor y \lor p)\) and \((x \lor y \lor \neg p)\).
 - Similarly, replace a 1-literal clause by 4 clauses.

- Clauses with more than three literals:
 - For \((l_1 \lor l_2 \lor \ldots \lor l_r)\) add new variable \(t\) and take as replacement clauses \((l_1 \lor l_2 \lor t)\) and \((\neg t \lor l_3 \lor \ldots \lor l_r)\).
 - Repeat this until the last clause has size three.
3-SAT is NP-complete

Proof:
1. Membership in NP (easy to check).
2. Reduction (previous slide).

3-Sat is important starting problem for many NP-completeness proofs.
Clique

- Clique: set of vertices $W \subseteq V$, such that for all $v, w \in W$:
 $\{v, w\} \in E$.

Clique

- Given: graph $G = (V, E)$, integer k.
- Question: does G have a clique with at least k vertices?
Clique is NP-complete

- Clique in **NP**.
 - Graph \((V,E)\) with \(n\) nodes can be encoded in \(O(n^2)\) bits; \(k\) can be encoded in \(\log(n)\) bits
 - A solution is a set of nodes \(S\), can be encoded in \(O(n)\) bits
 - Checking if \(S\) is a clique of size at least \(k\), takes \(O(n^2)\)

- Reduction from 3-SAT
 - Let \(x\) be an instance from 3-SAT
 - Define instance \(f(x)\) from Clique
 - Make clear that \(f\) can be performed in polynomial time
 - Show \(x\) is yes-instance iff \(f(x)\) is yes-instance
 - *All detailed in next slides*
Let \(x \) be an instance of 3-SAT

Define the following instance of clique:
- One vertex per literal per clause.
- Edges between vertices in different clauses, except edges between \(x_i \) and \(\neg x_i \).
- If \(x \) has \(m \) clauses, look for clique of size \(m \).

Idea: you can make a clique from the literals that are true.

\[\text{Clause: } \{x_1, \neg x_2, x_3\} \]
\[\text{Clause: } \{x_1, x_2, \neg x_3\} \]
Correctness

Let x be a satisfying truth assignment.

- Select from each clause one true literal (there must be at least one since x is true).
 - Since vertices in different clauses, except x_i and $\neg x_i$ are connected, the corresponding vertices form a clique with m vertices.

Suppose $f(x)$ has a clique of size m

- Set variable x_i to true, if a vertex representing x_i is in the clique, otherwise set it to false. This is a satisfying truth assignment:
 - It cannot contain a vertex representing x_i and a vertex representing $\neg x_i$, so well-defined
 - The clique must contain one vertex from each 3 vertices representing a clause (vertices within a clause are not connected), so true
Independent set

- **Independent set**: set of vertices $W \subseteq V$, such that for all $v, w \in W$: $\{v, w\} \not\in E$.

- **Independent set problem**:
 - Given: graph G, integer k.
 - Question: Does G have an independent set of size at least k?

- Independent set is NP-complete.
Independent set is NP-complete

- In NP.
- Reduction: transform from Clique.
- W is a clique in G, if and only if, W is an independent set in the complement of G (there is an edge in G^c iff. there is no edge in G).
Theorem: Independent Set is NP-complete.

Proof:
- The problem belongs to NP:
 - Solutions are subsets of vertices of the input graph; polynomial size
 - We can check in polynomial time for a given subset of vertices that it is an independent set and that its size is at least k.
- We use a reduction from Clique.
 - Let \((G,k)\) be an instance of the clique problem.
 - Transform this to instance \((G^c,k)\) of the independent set problem with \(G^c\) the complement of \(G\).
 - As \(G\) has a clique with \(k\) vertices, if and only if, \(G^c\) has an independent set with \(k\) vertices, this is a correct transformation.
 - The transformation can clearly be carried out in polynomial time.
Writing an NP-Completeness proof

- State the theorem.
- Proof starts with showing that problem belongs to NP.
 - Give/explain the encoding of a solution leading to yes,
 - show/state that it is polynomial in the size of instance and
 - explain how (or state that, if trivial) a yes-solution can verified in
 polynomial time w.r.t. the length of instance and solution.
- State which known NP-complete problem you reduce from.
 - Careful: do not go in the wrong direction.
- Explain the transformation (also called reduction).
- Give the proof: instance to original problem is Yes-instance, if
 and only if, transformed instance is Yes-instance for the known
 NP-complete problem.
 - Remember: you need to prove this in two directions.
- Phrase (or prove if not trivial): transformation can be carried
 out in polynomial time, hence problem is NP-complete.
- QED.
Vertex Cover

- Set of vertices $W \subseteq V$ with for all $\{x, y\} \in E$: $x \in W$ or $y \in W$.

- **Vertex Cover** problem:
 - Given G, find vertex cover of minimum size.
 - Vertex cover is NP-complete: exercise
Given: Graph $G=(V,E)$

Question: Can we colour the vertices with 3 colours, such that for all edges $\{v,w\}$ in E, the colour of v differs from the colour of w.

3-colouring is NP-Complete.
Proof of NP-Completeness of 3-Colouring

- In NP:
 - Encoding a solution: colour for each vertex (O(n))
 - Checking if a solution is a yes instance: O(n^2).
- Reduction from 3-SAT:
 Given an instance from 3-SAT
 We build a graph in 3 steps:
 1. Take a clique with 3 vertices True, False, C.
 2. Take two adjacent vertices for each variable x.

We name the colours: T, F, C
NP-Completeness of 3-Colouring

3. For each clause \{l_1, l_2, l_3\}, take the following gadget:
The transformation takes polynomial time.

Suppose the formula is satisfiable.
- Colour the variables T or F according to their truth value. By making proper case distinction you can show that this is a 3-colouring of G.

Suppose there is a 3-colouring of G.
- Consider the following solution for the SAT formula. Give the variables with colour T assignment true and the ones with colour F assignment false.
- You can check that $l_1 = l_2 = l_3 = F$ is not a feasible 3-colouring. So SAT formula must be true.

Note: In both cases, the intuition is that a literal vertex is coloured T (true), if and only if, we take it to be true in the formula.