SOME INFO ON MASTER’S THESIS

Marjan van den Akker
Master’s thesis topic

Master’s thesis I supervise are mostly on (but not limited to):

- Robustness in scheduling:
 - a solution which does not significantly degrade in the face of disruptions is called robust
 - Local search with simulation
 - Deterministic robustness models for stochastic problem
 - MIP models

- Optimization algorithms for sustainability:
 - Local search
 - MIP
 - Simulation

- Optimization algorithms for public transportation:
 - Local search
 - MIP
 - Robustness

- Real-world simulation studies
Thesis examples

- Forecast-based optimal operation of islanded microgrids (Alliander)
- Optimizing VSC set points for embedded HVDC power systems (DNV-GL)
- Solving Stochastic Parallel Machine Scheduling using a Metaheuristic Approach with Efficient Robustness Estimation.
- Combining local search and heuristics for solving robust parallel machine scheduling
- Using column generation for the Time Dependent Vehicle Routing Problem with Soft Time Windows and Stochastic Travel Times
- Improving Call & Email Blending - a Call Center Simulation study (cc4skype)
- Automating Resilience Tuning (bol.com)
Tracks in Computing Science Master

- **Programming Technology**
 - Concepts of program design, Advanced functional programming, Compiler construction, Program semantics and verification, Technologies for learning.

- **Algorithm Design and Analysis**
 - Algorithms for decision support, Geometric algorithms, Algorithms and networks, Scheduling and timetabling, Crowd Simulation, Network science

- **Advanced Planning and Decision Making**
 - Algorithms for decision support, Probabilistic reasoning, Algorithms and networks, Evolutionary computing, Scheduling and timetabling

- **Algorithmic Data Analysis**
 - Big data, Data mining, Multimedia retrieval, Pattern recognition, Pattern set mining
Tracks in Computing Science Master: Why?

- Gives a focus to your program
- Builds up knowledge for a master’s thesis
- Choose a master’s thesis topic in the area of your track(s)!