Functional Architecture

Session 11
Course ICT-Entrepreneurship

Prof.dr. Sjaak Brinkkemper
Contents

- What is architecture?
- Design structures in architecture
- Functional Architecture
 - Enterprise Function Diagrams
 - Decomposition
 - Positioning
- Reference Architectures
- Creating a Functional Architecture
Architecture

Definition:
An Architecture is a high-level decomposition of a system into major components together with a characterization of the interaction of the components (van Vliet 2000)

Purpose:
1. Communication among stakeholders
 Architects, Product Mgrs, Software Engineers, Testers, Sales&Marketing, Consultants, Customers
2. Capturing design decisions
 Rationale for later reference
3. Transferable abstraction for reuse
 Generalized constructs to be applied in other contexts
Types of architecture

- Functionele architecture: usage perspective
 - Enterprise architecture
 - Application architecture

- Technical architecture: development perspective
 - Software architecture
 - Component architecture
 - System architecture
 - Data architecture
 - Data flow architecture

- Examples of different architectures on the next slides
High level technical architecture

- User Interface Driver
- Application Logic
- Data Access Layer
- DBMS Driver
- Database Management System

Win-XP, Browser, X-Windows, even ASCII

Middleware

IBM DB-2, Oracle, MS SQL Server, Informix

Other Application
Component architecture

Function drivers

Shared services

Data banker
Physical models
Filter behaviors

Device interfaces

Application data types

Extended computer

Software utilities
Component Architecture
Contents

- What is architecture?
- Design structures in architecture
- Functional Architecture
 - Enterprise Function Diagrams
 - Decomposition
 - Positioning
- Reference Architectures
- Creating a Functional Architecture
What makes a good architecture?
What makes a good architecture?

- Architecture is a premier key to the success of a product
 - Good architectures survive many releases
 - New functionality can easily be incorporated
 - Elegancy of a product is reflected in the elegancy of the architecture

What makes a good design?

- SAP R3, Google SE, MS Windows, Linux, ...
- No scientific evidence of good architectures
- Some evidence for other domains: electronics, building, civil engineering
Influences on architecture

- Requirements of product
 - Functionality
 - Technical context
- Development organization and history
 - Earlier versions
 - Other systems
- Background and expertise of architect
- Technical environment
 - Design tools available
 - Development platform
Design structures

Design structures for the functional architecture

A. Modularity: structure and flexibility
 • What are the modules?
 • For now and for in the future?

B. Variability: multiple platforms and products
 • What variability is to be distinguished?
 • Both technical and functional
 • In which modules resides the variability?

C. Interoperability: interfacing externally
 • What interfaces are needed?
 • Standards or dominant players available?
 • Positioning of interfaces in architecture?

Discuss these on a beamer
Example: Technical modularity

A. Single UI platform

Windows UI Module

Application Module

B. Multiple UI platforms

UI Windows

UI GSM

UI PDA

UI Driver Module

Generic UI Module

Application Module
Example: Functional modularity

A. Single Warehousing scenario

- Warehouse Module
- Manufacturing Module

B. Multiple Warehousing scenarios

- Retail
- Factory outlet
- Distributor
- WH scenario Module
- Generic WH Module
- Manufacturing Module
Contents

- What is architecture?
- Design structures in architecture
- **Functional Architecture**
 - Enterprise Function Diagrams
 - Decomposition
 - Positioning
- Reference Architectures
- Creating a Functional Architecture
Product Software Architecture

1. Functional Architecture
 • use Enterprise Function Diagram

2. Technical Architecture
 • use techniques from other courses
 • UML
 • software architecture diagram
Functional Architectures

- A functional architecture is an architectural model from a usage perspective.
- So the functional architecture should resemble the enterprise functions of the customer organisation or user context.
 - Names of modules should resemble the names of enterprise functions.
 - Flows in functional architecture resemble the interactions in the customer domain.
- Standard functional architecture is called Reference Architecture.
- More theory on these types of models is presented in the course Enterprise Architecture.
Example of Functional Architecture

On-line authoring tool

Templates Mgmt

import

Template

upgrade

References

Draft Management

drafts

Sign off

Comments

Authoring

Templates

final document

Publishing

Print ready document

Authoring request

Image order

comment

Example of Functional Architecture for ERP product
Enterprise Function Model definition

Enterprise Function Model

An Enterprise Function Model is the representation of the primary process of an enterprise, consisting of its physical and administrative functions.

The Enterprise Function Model also helps to:
- identify the main functions
- show the interaction of the enterprise functions
- create a clear overview of the enterprise as a whole

EFD: Enterprise Function Diagram
Product usage scope

Example: Collaborative authoring
Note: We assume it has been decided that Reference management, Reviewing and Image handling are not in the scope of the product.
FA on module level: Authoring

Authoring

Language Support

Completeness Checking

Writer

Drafting

Template Selection

Review Handler

Module scope

Sub-module
FA of Draft management

Draft Management

Baseline Checker

Draft Administration

Change Impact Analyzer

Sub-module

Module scope

 authored draft

 review comments

 template upgrade

 references

 sign off

 draft

 draft
Notation of EFDs

- **Module or sub-module**
 - Color is used for categorization
 - All words start with Capital

- **Flow**
 - all lower case

- **Scenario**
 - as overlay on EFD
Scenario on EFDs

Sales Order Management

Assembly Control

Pack & Ship Control

Final Assembly

Packing & Shipping

New Sales Order

Sales Order executed

Assembly Order

Assembly Order Executed

Packing & Shipping transfer

Packing & Shipping control executed

Shop floor Order

Shop floor Order Executed

Shipping Order

Shipping executed

Components

Finished goods

Shipment
Technical systems

FA can also be provided for technical systems

User Interface
- User Interface Driver
- Application Logic
- Data Access Layer
- DBMS Driver

DBMS

BPEL Process Mgr
- BPEL Editor
- Workflow
- Rules

Web Service Manager
- Security

Enterprise Service Bus
- Adapter
- Transformer
- Routing

Application Server

Business Activity Monitoring

Workflow

Rules

Adapter

Transformer

Routing

Security

Application

Activity

Monitoring

Web Service

Manager

BPEL

Editor

Routing
Identifying Enterprise Functions

- What is an Enterprise function?

 Definition: An enterprise function is a collection of *coherent* processes, *continuously performed* within an enterprise and supporting its mission

- Examples:

 Corporate Planning
 Human Resource Management
 Supplier Contract Management
 Shop Floor Control

- Naming standards:
 - Use substantivised nouns: Planning in stead of Plan
 - Precise, determining words known in the business domain
 - Name is Capitalized
Identifying Functions (2)

Function Typology

- Life cycle stadium of a product or service:
 Design, Manufacturing, Distribution, Purchase
- Supporting resources:
 Human Resource Management, Facility Management
- Control and planning of the company core activities:
 Administration, Finance, Credit Control

Usually two levels are enough for Functional Architectures
Contents

- What is architecture?
- Design structures in architecture
- Functional Architecture
 - Enterprise Function Diagrams
 - Decomposition
 - Positioning
- Reference Architectures
- Creating a Functional Architecture
Decomposition

- What is a process?
 "A business process is an activity of which the execution can be described in terms of needed and delivered data and of which the start and end can be determined."

- A process is the WHAT a company does
- Not HOW it is being done.
Functions versus Processes

- Examples of Processes:
 - accept order
 - create delivery schedule
 - receive payment
 - pay employee
 - verify customer credit rating

- Lower level of detail compared to a function
- No realization (how) information
- Processes are modeled in the Feature Model
Functional Decomposition

- The modules in a functional architecture are modelled in 2 or 3 layers
- At the lowest level the module consists of features
- Definition: Feature is a discrete unit of unique and attractive functionality of a product that delivers measurable benefit to customers
- The lowest level modules are elaborated in a feature model
Example: Authoring tool

- Templates
- Publishing
- Authoring
- Draft Mgmt
- Baseline Checker
- Draft Administration
- Change Impact Analyzer

- Language Support
- Template Management
- Writer
- Completeness Checking
- Drafting
- Review Handler

- Open draft
- Save draft
- Save draft as
- Convert draft
- Send draft to

- Select rules
- Run checker
- Provide statistics
-
Reality vs. Product

Function

Processes

Module

Features
Features

Feature models are a modeling tool for the process support functionality in a software product.

Feature models

- Writer
- Template Mgmt
- Review Handler

Drafting
- Open draft
 - Save draft
 - Save draft as
- Saving
- File exchange
 - Convert draft
 - Send draft to
Contents

- What is architecture?
- Design structures in architecture
- Functional Architecture
 - Enterprise Function Diagrams
 - Decomposition
 - Positioning
- Reference Architectures
- Creating a Functional Architecture
Positioning

Flow of execution progress
Hierarchical positioning of modules

- Strategic functions (management)
- Tactical functions (control)
- Operational functions (execution)
- Supportive functions (platform)
Sequential positioning of modules

3rd Party Products

Input functions

Processing functions

Output functions

3rd Party Products
How to position the modules?

- **Input functions**
 - Bussiness Planning
 - Product Innovation

- **Processing functions**
 - Requirements Planning
 - Assemebly
 - Sales

- **Output functions**
 - Material Plan
 - Sales Order
 - Customer Request

Strategic functions (management)
- Master Planning
- Product Information

Tactical functions (control)
- Purchase
- Production
- Sales

Operational functions (execution)
- Warehousing
- Receipt & Goods
- Component Manufact.
- Assembly
- Packing & Shipping

Supportive functions (platform)
- PO/Contracts/Inquiries
- Progress
- 3rd Party Products

3rd Party Products
- Receieved Goods
- Picking
- Shipment order
Contents

- What is architecture?
- Design structures in architecture
- Functional Architecture
 - Enterprise Function Diagrams
 - Decomposition
 - Positioning
- Reference Architectures
- Creating a Functional Architecture
Reference Architectures

A Reference Architecture is a generic functional architecture for software products in a particular line of business

Purposes:
- Expressing **complete** functional coverage in line of business
- Indication of the **functional coverage** of a product
- Indication of the **technical quality** of a module
- Identifying market **growth** options and **roadmap**
- Positioning with **3rd party** products

Sources on the web, e.g.:
- Supply Chain Operations Reference (SCOR), see scor.org
ITIL models
Control Objectives for Information and related Technologies (COBIT)
Quality Indication on Reference Architecture

Technical Quality

Key:
- **Differentiator**
- **Good**
- **Weak**
- **Opportunity**

<table>
<thead>
<tr>
<th></th>
<th>Differentiator</th>
<th>Good</th>
<th>Weak</th>
<th>Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Row</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Row</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Row</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variability Indication on Reference Architecture

Business Variability

Key:
- Red: Real Estate
- Blue: Facility Mgmt
- Light Blue: Both
Healthcare EFD

Insurers
Regulators
Payers

Health Interest Groups

Client

Supplier

External Care Provider

Resource Allocation
Financial Administration

Care Business Management
Quality
Planning & Budgeting
Client Order Management
Client Care Process Control

Intake → Observation → Interpretation → Intervention → End of Episode of Care

Materials Management
Human Resource Mngt / Payroll
Supplier Management
Reporting / Analyzing

Facilitating Functions
Service Management
Customer Request Mngt.
Project Management

Point of Service
Public Health
Educational Organization
Care Customer
Customer
Care Planning & Budgeting

Care Business Management

- Demand Plan Definition
 - Demand Plan to be (Re) defined
 - Demand Forecast Definition

- Resource Plan Definition
 - Resource Plan to be (Re) defined
 - Resource Planning

- Internal Budget Creation
 - Internal Budgets to be (Re) created
 - Internal Budgets to be Processed

- Financial Business Calculation
 - Investment information to be Processed

- Budget & Plan Monitoring
 - Budget & Plan to be (Re) defined

- Contracts to be Managed

- CCPC
 - Internal Budgets to be Changed

Financial Administration
Contents

- What is architecture?
- Design structures in architecture
- Functional Architecture
 - Enterprise Function Diagrams
 - Decomposition
 - Positioning
- Reference Architectures
- Creating a Functional Architecture
Creating a Functional Architecture

1. Determine scope
2. Define request - feedback flows
3. Model the primary function flow
4. Add control and monitoring functions
5. Specify external to/from internal interactions
Step 1: Determine scope

- Identify all external products in the usage environment
- Take the Product Context diagram as a starting point.
- Include future products to be interfaced with
Suppose we are architecting a Sales product that will be interfaced with a CRM system and possibly with a Transportation product.
Step 2: Define request - feedback flows

- Define all request-feedback loops
 a. with the the external products
 b. between functions and external products

Note: focus just on essential interactions; those interactions related to the main features of the product
Request - Feedback

Flows always appear in a pair:
- a combination of a Request and
- a return arrow that represents the Feedback of the result.

This construction is called a ‘Request Feedback loop’.
Example

- Describe interaction between product and external products:
- E.g. with CRM
Step 3: Model the primary function flow

- The primary function flow (aka. primary process) is modeled by identifying the steps as function boxes. These functions are separated by flows that are usually information flows or waiting queues.
Example
Model primary function flow

Sales

Sales Order Request

Change mgmt

Final Sales Order

Order Fulfillment

Delivered Sales Order

Customer Relationship Management
Step 4: Add control and planning functions

- The primary function flow is controlled by one or more enterprise functions.
- The relation between every primary function and every control function is usually a request-feedback loop.
- On top of these functions the appropriate planning functions are added.
Example
Add control and planning

Sales

- Sales Order Request
 - Change mgmt
 - Sales Order Request
 - Sales Planning
 - Plans
 - Targets
 - Margins
 - Realisation
 - Sales Control
 - Order Fulfillment
 - Final Sales Order
 - Delivered Sales Order

Customer Relationship Management
Step 5: Specify interactions

- Specifying the information represented by the request flow from the external product e.g. CRM requests a sales order to be delivered.
- Follow the subsequent steps through the scope until one or more feedback flows; splitting and joining (bifurcations) are possible.
- Follow the process from the outside to inside the product.
Example
Specify interactions

Sales

- Sales Planning
 - Plans
 - Targets
 - Request
 - Sales Order Request

- Sales Control
 - Margins
 - Realisation
 - Order Fulfillment
 - Final Sales Order

- Quotation Control
 - Quotation
 - Delivered Sales Order
 - Quotation Registration

CRM
Concluding

- **Enterprise Function Diagrams** are a powerful modeling tool for a functional architecture of software products.
- Assists in the **determination of modules**.
- **Interactions** between the functions and the environment are shown.
- Models are **recognized by non-specialists without formal training**.
- Can be applied in **any type of business**:
 - Public sector: health care, governmental
 - Private sector: manufacturing, financial, services, food and beverage, project industries.