Philosophical Foundations

- Aristotelian: practical syllogisms
- Dennett's intentional stance: B & D
- Bratman: intentions of rational agents
- Cohen & Levesque: theory of intentions
- Rao & Georgeff: BDI theory/logic/arch.
- Brooks: non-cognitive reactive systems
- Sloman: emotional agents
- Asimov: social robots: laws of robotics

‘Practical’ Reasoning (Aristoteles)

- An 'ordinary' practical syllogism

 Exercise would be good for me.
 Jogging is exercise.
 Therefore, jogging would be good for me.

- 'Just' deductive / logical reasoning
 - 'Da's nogal logisch....'

‘Practical’ Reasoning (Aristoteles)

- More interesting practical syllogism

 Would that I exercise.
 Jogging is exercise.
 Therefore, I shall go jogging.

- No deduction, but rather a specification of the action selection / decision of the agent!

Dennett’s intentional stance

- The intentional stance is the strategy of interpreting the behaviour of an entity by treating it as if it were a 'rational agent' that governed its choice of action by a consideration of its beliefs and desires

 - Anthropomorphic instance of the design (functionality) stance, contra the physical stance
 - Instrumental / operational use of beliefs and desires of human beings: no causally active inner states of people, just calculational devices

Background: Dennett’s philosophy of consciousness

- Reduction of human consciousness to an illusionary feature of a 'virtual machine' running on the brain as hardware
- This hardware can be something different, provided sufficiently complicated
- In principle it might be a computer, so that a computer may run a 'consciousness program' → a 'conscious computer'
- Dennett is a proponent of Strong AI

Bratman: the role of intentions

- Rational behavior needs, besides beliefs and desires, also intentions

 - Two justifications for this:
 - (Resource-bounded)agents need to settle on some desire(s) and commit themselves
 - Co-ordination of future actions after commitment(s)
Bratman

Intentions, unlike mere desires, play the following functional roles:
- Intentions normally pose problems for the agent; the agent needs to determine a way to achieve them → focus on solving concrete problems
- Intentions provide a “screen of admissibility” for adopting other intentions
- Agents “track” the success of their attempts to achieve their intentions -- replanning

Cohen & Levesque: intentions

A ‘tiered’ formalism
- Atomic layer: beliefs, goals, actions
- Molecular layer: concepts defined in terms of primitives, e.g. intention

Intention = choice + commitment

Cohen & Levesque

Intention should satisfy the following: if an agent intends to achieve p, then:
- The agent believes p is possible
- The agent does not believe he will not bring about p
- Under certain conditions, the agent believes he will bring about p
- Agents need not intend all the expected side-effects of their intentions

Rao & Georgeff: BDI theory

“Rational agent possesses mental attitudes of beliefs, desires and intentions, representing the information, motivational, and deliberative states of an agent, respectively”

“These mental attitudes determine the system’s behaviour and are critical for achieving adequate or optimal performance when deliberation is subject to resource bounds” --- computational perspective!

Rao & Georgeff

Beyond rationality: BDI+

Brooks on emotions

Disappointed with GOFAI/reasoning approach to robotics

Brooks’ approach:
- bottom-up instead of top-down
- Subsumption architecture: “reactive system”, no modelling (“world is best model”), no ‘thinking’
- ‘cockroach AI’ (Genghis)
- humanoid robot (Cog)
- ‘Having a mind’/thinking is an emergent property of sufficiently complex systems?

Beyond rationality: BDI+

Tradition: emotions versus rationality
Can machines have emotions?
Brooks:
Humans are machines
Humans have emotions
Ergo: there are machines with emotions

Once you have concluded this, there is no problem of ascribing emotions to machines!
Aaron Sloman: how to build emotional agents?

- Humans are machines, though not artefacts
- What kind of machines?
- In particular, people have emotions
- Are emotions and rationality opposites?
- What kind of machines has emotions?
- Implications for AI and (Intel.)A(gents)?
 - How do we employ emotions fruitfully in agent design?

Towards social agents / robots

- Individual agent has mental / cognitive attitudes
- It is even more interesting to put several agents into the same environment
 - Multi-agent systems (MAS), or even
 - Agent societies
- Social attitudes become important
 - ‘Agent ethics’ (what is ‘good’ behaviour?)
 - Artificial Normative Systems

Asimov’s laws of robotics

- A robot may not injure a human being, or, through inaction, allow a human being to come to harm
- A robot must obey the orders given it by human beings except where such orders would conflict with the above
- A robot must protect its own existence as long as such protection does not conflict with the above rules

Questions:

- How realistic are these laws?
- How easily implementable / realizable are these laws?
 - What AI techniques are needed for implementation?

Theory of Mind

- Notion from biology / ethology and child psychology
- Means that an agent has a theory and can reason about the possible mind of another agent
- Seems also useful for some applications of artificial agents
- Currently under investigation in our group in context of applications such as companion robots and virtual characters in video games