(Prop.) Branching temporal logic

- **CTL***
 - Formulas:
 - *State* formulas: pertaining to *states* in time tree
 - *Path* formulas: pertaining to *paths* in time tree

CTL* syntax

- **State** formulas
 - propositional atoms in a set At
 - \(\Box_i, \Diamond_i \) *state formulas* \(i \)
 - \(\neg \Box_i, \Diamond_i, \Box_i \Diamond_i, \Box_i \Diamond_i \) *state formulas*
 - \(\Box \) *path formula* \(i \) \(E \), \(A \) *state formula*

CTL* semantics

- **Models** are temporal structures \(M = (S, R, p) \) where
 - \(S \) is a set of states
 - \(R \subseteq S \times S \), a serial binary relation, a *tree*
 - \(p : S \to P(At) \) is a truth assignment function
- **A fullpath** is an *infinite* sequence \(s_0, s_1, \ldots \) of states such that \(\Box(s_0, s_1) R \).

CTL* semantics

Given \(M = (S, R, p) \):
- \(M, s_0 \models P \) if \(P \in s_0 \) (P \in At)
- \(M, s_0 \models \neg \Box_i \) if \(\neg M, s_0 \models \Box_i \)
- \(M, s_0 \models \Box_i \) if \(M, s_0 \models \Box_i \)
- \(M, s_0 \models \Box_i \) or \(M, s_0 \models \Diamond_i \)
- \(M, s_0 \models \Box_i \Diamond_i \) if exists fullpath \(s_0, s_1, \ldots \) in \(M \) s.t. \(M, s_0 \models \Box_i \)
- \(M, s_0 \models A \) if for all fullpath \(s_0, s_1, \ldots \) in \(M \):
 - \(M, s_0 \models \Box_i \)
- \(M, s_0 \models \Box_i \Diamond_i \) for some \(n \geq 0 \)

CTL* semantics

- \(M, s_0 \models \Box_i \) if \(s_0 \models \Box_i \) (state form)
- \(M, s_0 \models \neg \Box_i \) if \(\neg M, s_0 \models \Box_i \)
- \(M, s_0 \models \Box_i \) or \(M, s_0 \models \Box_i \)
- \(M, s_0 \models \Box_i \Diamond_i \) if \(s_0 \models \Box_i \) or \(M, s_0 \models \Box_i \)
- \(M, s_0 \models \Box_i \Diamond_i \) if \(M, s_0 \models \Box_i \)
- \(M, s_0 \models \Box_i \Diamond_i \) for some \(n \geq 0 \)
CTL* semantics

 - (a) exists \(k \geq 0 \) s.t. \(M, [] \models [1] \), and for all \(0 \leq j < k \), \(M, [] \models [j] \), or
 - (b) for all \(j \geq 0 \), \(M, [] \models [j] \).

BDI logic

- **combination of:**
 - branching time temporal logic (CTL*)
 - modal logic(s) of belief, desires & goals (intentions)

BDI logic: syntax

- **extension of the (first-order version of) branching-time temporal logic CTL***

 - **temporal operators**
 - \(U, [j], [O], \) optional, inevitable

 - **Modalities:**
 - \(\text{BEL}([j]), \text{GOAL}([j]), \text{INTEND}([j]) \)

BDI logic: syntax

- **State formulas**
 - any first-order formula
 - \([1], [j], [O] \) state formulas
 - \([O, [1], [O]] \) (k) state formulas
 - event type \([succeeded(e)], [failed(e)] \) state formulas
 - \([1] \) state formula \([\text{BEL}([j]), \text{GOAL}([j]), \text{INTEND}([j])] \) state formulas
 - \([1] \) path formula \([\text{optional}()] \) state formula

BDI logic: syntax

- **Path formulas**
 - any state formula
 - \([1], [O] \) path formulas
 - \([O, [1], [O], [O], [1], [O], [O]] \) path formulas

BDI logic: syntax

- **abbreviations**
 - \([] = ~[O] \)
 - inevitable([j]) = ~optional(~[j])
 - done(e) = succeeded(e) \& failed(e)
 - succeeds(e) = inevitable(O(succeeded(e)))
 - fails(e) = inevitable(O(failed(e)))
 - does(e) = inevitable(O(done(e)))
BDI logic

\[M = (W, E, T, <, U, B, G, I, []) \]

- \(W \) set of possible worlds
- \(E \) set of primitive event types
- \(T \) set of time points
- \(< \) a binary relation on time points, serial, transitive, backward-linear
- \(U \) universe of discourse
- \(\Delta \) mapping of first-order entities to \(U \), for any world and time point
- \(B, G, I \) \(W \to T \to W \) accessibility relations for \(\text{BEL, GOAL, INTEND} \)

BDI logic: semantics

\[R(w,t) = \{ w' \mid R(w,t,w') \} \]

- \(\Delta R_B, \Delta R_G, \Delta R_I \) for any world and time point
- \(B, G, I \) \(W \to T \to W \) accessibility relations for \(\text{BEL, GOAL, INTEND} \)

BDI logic: possible worlds

\[w = (T_w, A_w, S_w, F_w) \]

- \(T_w \) set of time points in world \(w \)
- \(A_w \) restriction of \(< \) to \(T_w \)
- \(S_w : T_w \to T_w \) E maps adjacent time points to (successful) events
- \(F_w : T_w \to T_w \) E maps adjacent time points to (failing) events
- the domains of the functions \(S_w \) and \(F_w \) are disjoint

BDI logic: fullpaths in worlds

- **Fullpath** in world \(w \) is an infinite sequence of time points \((t_0, t_1, \ldots) \) such that \((t_0, t_1) \in A_w \)
- fullpath \((t_0, t_1, \ldots) \) in world \(w \) is denoted as: \((w_{t_0}, w_{t_1}, \ldots) \)
BDI logic: semantics of state f.

- $M, v, w_1 \models q(y_1, ..., y_n) \land (v(y_1), ..., v(y_n)) \models (q, w, t)$
- $M, v, w_1 \models \Box \models M, v, w_1 \models \Box
- M, v, w_1 \models \Box \models M, v, w_2 \models \Box
- M, v, w_1 \models \Box \models M, v, w_1 \models \Box
- M, v, w_1 \models \Box \models M, v, w_1 \models \Box
- M, v, w_1 \models [x \Box \models M, v(d/x), w_1 \models []$ for some $d \in U$

Semantics of state formulas (ctd)

- $M, v, w_1 \models \text{optional}(\Box)$ \ exists fullpath $(w_{i_0}, w_{i_1}, ...) \ s.t. M, v, (w_{i_0}, w_{i_1}, ...) \models []$
- $M, v, w_1 \models \text{BEL}(\Box)$ \ for all $w' \in B(w, t)$: $M, v, w_1 \models []$
- $M, v, w_1 \models \text{GOAL}(\Box)$ \ for all $w' \in G(w, t)$: $M, v, w_1 \models []$
- $M, v, w_1 \models \text{INTEND}(\Box)$ \ for all $w' \in I(w, t)$: $M, v, w_1 \models []$

Semantics of path formulas

- $M, v, (w_{i_0}, w_{i_1}, ...) \models \Box \models M, v, w_{i_0} \models \Box$

(state form)
- $M, v, (w_{i_0}, w_{i_1}, ...) \models \Box \models M, v, (w_{i_0}, w_{i_1}, ...) \models []$
- $M, v, (w_{i_0}, w_{i_1}, ...) \models \Box \models M, v, (w_{i_0}, w_{i_1}, ...) \models []$
- $M, v, (w_{i_0}, w_{i_1}, ...) \models \Box \models M, v, (w_{i_0}, w_{i_1}, ...) \models []$
- $M, v, (w_{i_0}, w_{i_1}, ...) \models []$ for some $k \geq 0$

Semantics of path formulas (ctd)

- $M, v, (w_{i_0}, w_{i_1}, ...) \models \Box \models M, v, w_{i_0} \models \Box$

- (a) exists $k \leq 0$ s.t. $M, v, (w_{i_0}, ...) \models []$ and
- for all $0 \leq j < k$: $M, v, (w_{i_j}, ..., w_{i_k}) \models []$, or
- (b) for all $j \geq 0$: $M, v, (w_{i_j}, ...) \models []$

State formulas pertaining to events

- $M, v, w_1 \models \text{succeeded}(e) \models$ there exists t_{10} s.t.
 $S_{10}(0, 11) = e$
- $M, v, w_1 \models \text{failed}(e) \models$ there exists t_{10}
 s.t. $F_{10}(0, 11) = e$