Overview

• Basic Modal Logic
• Relevant Forms of Modal Logic
 - Dynamic logic
 - Temporal logic
 - Epistemic logic
 - Deontic logic
 - Context logic
 - ...

Overview (ctd)

• Applications
 - Agent logics such as BDI-CTL
 - Common Knowledge & Joint/Collective Intentions
 - ...

Basic Modal Logic

• Expresses ‘intensional’ (context/situation-sensitive) notions such as
 - Knowledge
 - Belief
 - Obligation
 - Action
 - Time

Modal language

• Propositional logic
• Extended with modal operators
 - \(\Box \phi \): it is necessary that \(\phi \)
 - \(\Diamond \phi \): it is possible that \(\phi \)

Semantics: Kripke models

• Kripke model \(M = (S, \pi, R) \)
 - \(S \) is a set of worlds (states)
 - \(\pi \) is a truth assignment function
 - \(\pi: S \times AT \rightarrow \{tt, ff\} \)
 - \(R \subseteq S \times S \) is an accessibility relation
Kripke models

Interpretation
• Like classical propositional logic
• But now relative to a model and a world (state):
 \[M, s \models \phi \]
• E.g.
 \[M, s \models p \iff s(s, p) = \text{tt} \]
 \[M, s \models \phi \land \psi \iff M, s \models \phi \text{ and } M, s \models \psi \]

Interpretation of \(\Box\) and \(\Diamond\)
• \(M, s \models \Box \phi \iff M, t \models \phi \) for every \(t \) such that \(R(s, t) \)
• \(M, s \models \Diamond \phi \iff M, t \models \phi \) for some \(t \) such that \(R(s, t) \)

Interpretation of \(\Box\)

Interpretation of \(\Diamond\)

Validity in modal logic
• \(\phi \) is valid in a model \(M = (S, R, \mu) \)
 (denoted \(M \models \phi \)) \iff
 \(M, s \models \phi \) for all \(s \in S \).
• \(\phi \) is valid (denoted \(\models \phi \)) \iff
 \(M \models \phi \) for all Kripke models \(M \).
• Sometimes we need validity wrt subclasses of models:
 \(\phi \) is valid wrt class \(\mathcal{C} \) (denoted \(\models \phi \) \iff
 \(M \models \phi \) for all Kripke models \(M \in \mathcal{C} \).
Basic Modal Logic: system \(K(m) \)

- As usual in logic we can try to axiomatize validities.

- Axioms:
 - All (or enough) propositional tautologies
 - \(\Box \phi \land \Box \psi \Rightarrow \Box (\phi \land \psi) \) (K axiom)

- Rules:
 - \(\Box \phi \Rightarrow \phi / \Box \phi \) (modus ponens)
 - \(\phi \lor \Box \phi \Rightarrow \phi \) (necessitation rule)

Caution!!

- NB. Distinguish the necessitation rule
 - \(\phi \Rightarrow \Box \phi \)
 - from the invalid assertion
 - \(\phi \Rightarrow \Box \phi \)

Derivability in \(K \)

- A derivation of a formula \(\psi \) is a finite sequence of formulas \(\phi_1, \phi_2, ..., \phi_n = \psi \), where each \(\phi_i \), for \(1 \leq i \leq n \), is either an instance of the axioms (or rather axiom schemes), or the conclusion of one of the rules of which the premises have been derived already, i.e. appear as \(\phi_j \) in the sequence with \(j < i \).

- When we can derive an epistemic formula \(\psi \) by using the axioms and rules of \(K(m) \), we write \(K(m) \vdash \psi \).

System \(K(m) \)

- System \(K(m) \) is sound and complete, i.e.
 - \(\vdash \psi \Leftrightarrow K(m) \vdash \psi \)

 This means that exactly all valid modal assertions can be obtained by derivations in system \(K(m) \).

Some (non)theorems in \(K \)

- \(\vdash \Box \phi \land \psi \Rightarrow (\Box \phi \land \Box \psi) \)
- \(\vdash \Box (\phi \lor \psi) \Rightarrow (\Box \phi \lor \Box \psi) \)
- \(\vdash \Box (\phi \land \psi) \Rightarrow (\Box \phi \land \Box \psi) \)
- \(\vdash \phi (\phi \lor \psi) \Rightarrow \phi \lor \Box \psi \)
- \(\vdash \Box (\phi \lor \psi) \Rightarrow (\Box \phi \lor \Box \psi) \)
- \(\vdash \Box (\phi \land \psi) \Rightarrow (\Box \phi \land \Box \psi) \)

Application: Dynamic Logic

- An example of an (indexed) version of system \(K \) is dynamic logic, where the \(\Box \) modality is associated with the execution results of a program / action
 - \(\Box_\alpha \), normally written \([\alpha]\)
Dynamic Logic

- **Syntax**
 - Operator $[u]$ with reading:
 - $[u]q$: after execution of u it holds (nec.) that q
 - $\langle [u] \rangle q$: after execution of u it holds (poss.) that q

- **Semantics**
 - Accessibility relation R_u for every action u.
 - $R_u = R_u \circ R_u$
 - $R_u = R_u \cup R_v$
 - $R_v = R_v \circ R_u$

Dynamic Logic

- **Interpretation formulas**
 - $M, s \vDash [u] \psi$: for all s' with $R_u(s, s')$: $M, s' \vDash \psi$
 - $M, s \vDash <u> \psi$: for some s' with $R_u(s, s')$: $M, s' \vDash \psi$

Special properties of accessibility relations

- R is reflexive if $\forall s \in S \ (s, s) \in R$.
- R is transitive if $\forall s, t, u \in S \ ((s, t) \in R \land (t, u) \in R) \Rightarrow (s, u) \in R$.
- R is symmetrical if $\forall s, t \in S \ ((s, t) \in R) \Rightarrow (t, s) \in R$.
- R is euclidean if $\forall s, t, u \in S \ ((s, t) \in R \land (t, u) \in R) \Rightarrow (s, u) \in R$.
- R is serial if $\forall s \in S \exists t \in S \ (s, t) \in R$.
- R is an equivalence relation if R is reflexive, transitive and symmetrical

Special classes of models

- \mathcal{K}_m is the class of all reflexive Kripke models with m agents.
- \mathcal{S}_m is the class of all reflexive-transitive Kripke models with m agents.
- \mathcal{S}_m is the class of all Kripke models with m agents with accessibility relations that are equivalence relations.
- \mathcal{K}_m is the class of all Kripke models with m agents with serial accessibility relations.
- \mathcal{K}_m is the class of all Kripke models with m agents with serial, transitive and euclidean accessibility relations.

Systems T, S_4, S_5, KD, KD_{45}

- $T_m = K_m + \text{axiom } \Box \Box \phi \rightarrow \phi$
- $S_4(m) = T_m + \text{axiom } \Box \Box \phi \rightarrow \Box \Box \phi$
- $S_5(m) = S_4(m) + \text{axiom } \Diamond \Box \phi \rightarrow \Diamond \Box \phi$
- $KD_m = K_m + \text{axiom } \Box \Box \phi \rightarrow \Box \Box \phi$
- $KD_{45}(m) = K_m + \text{axioms } \Box \Box \phi \rightarrow \Box \Box \phi$, $\Box \phi \rightarrow \Box \Box \phi$
Alternative formulation of the 5-axiom

• \(\neg \Box \phi \rightarrow \Box \neg \Box \phi \)

Rewrite:

• \(\Box \neg \phi \rightarrow \Box \Box \neg \phi \)

Substitute \(\psi \) for \(\neg \phi \):

• \(\Box \psi \rightarrow \Box \Box \psi \)

Substitute \(\phi \) for \(\psi \):

• \(\Box \phi \rightarrow \Box \Box \phi \)

Soundness & completeness of T, S4, S5, KD, KD45

\[
\begin{align*}
T_{(m)} \vdash \phi & \iff T_{(m)} \models \phi \\
S4_{(m)} \vdash \phi & \iff S4_{(m)} \models \phi \\
S5_{(m)} \vdash \phi & \iff S5_{(m)} \models \phi \\
KD_{(m)} \vdash \phi & \iff KD_{(m)} \models \phi \\
KD45_{(m)} \vdash \phi & \iff KD45_{(m)} \models \phi
\end{align*}
\]

Deontic logic

• The system KD is also known as SDL (standard deontic logic)
• Deontic logic is the logic of obligation, prohibition and permission, or rather: the logic of ideal vs actual situations

Deontic logic

• Prop. Calculus (including MP)
• \((O\phi \land O(\psi \rightarrow \phi)) \rightarrow O\psi \) (K axiom)
• \(\phi / O\phi \) (necessitation rule)
• \(\neg O\bot \) (D-axiom: obligation is consistent)
• \(F\psi \leftrightarrow O\neg\psi \) (forbidden is obliged to not)
• \(P\psi \leftrightarrow \neg F\psi \) (permitted is not forbidden)

Temporal Logic

• Basic linear-time logic (LTL)
• Time as accessibility relation
 - Reflexive
 - Transitive

Basic LTL

• Viewed in this way:
 - LTL = S4(\(\Box\))
 - \(\Box \) stands for "always in the future"
 - By convention the present included in the future
Basic LTL
- Prop. Calculus (including MP)
- \((\Box \phi \land \Box(\phi \rightarrow \psi)) \rightarrow \Box \psi\) (K axiom)
- \(\phi / \Box \phi\) (necessitation rule)
- \(\Box \phi \rightarrow \psi\) (always implies now)
- \(\Box \phi \rightarrow \Box \Box \phi\) (always implies always always)

Epistemic & Doxastic Logic
- For knowledge we take the relation \(R_i:\)
 - reflexive, (transitive) and euclidean
 - (i.e. an equivalence relation)
- For belief we take the relation \(R_i:\)
 - serial, transitive and euclidean

Basic Epistemic Logic: \(S5(\text{m})\)
- Prop. Calculus (including MP)
- \((K_i \phi \land K_i(\phi \rightarrow \psi)) \rightarrow K_i \psi\) (K axiom)
- \(\phi / K_i \phi\) (necessitation rule)
- \(K_i \phi \rightarrow \psi\) (knowledge is true)
- \(K_i \phi \rightarrow K_i K_i \phi\) (positive introspection)
- \(\neg K_i \phi \rightarrow K_i \neg K_i \phi\) (negative introspection)

Interpretation of \(K_i\)

Basic Doxastic Logic: \(KD45(\text{m})\)
- Prop. Calculus (including MP)
- \((B_i \phi \land B_i(\phi \rightarrow \psi)) \rightarrow B_i \psi\) (K axiom)
- \(\phi / B_i \phi\) (necessitation rule)
- \(\neg B_i \bot\) (belief is consistent)
- \(B_i \phi \rightarrow B_i B_i \phi\) (positive introspection)
- \(\neg B_i \phi \rightarrow B_i \neg B_i \phi\) (negative introspection)

More advanced applications
- Context logic
- Common knowledge & belief
- Collective intentions
- (Extended) LTL
- CTL (tree logic, branching-time)
- BDI-CTL