Today: Vectors and vector algebra
Ray tracing – part I of the course
Ray tracing – part I of the course

• Why vectors?
 – you need to shoot a lot of such rays!
 – vectors are the vehicles you need for ray tracing
And vectors as vehicles for....

- Define a virtual scene
- Define a camera direction
- Trace a bullet around a scene
- Line-of-sight queries
- And greetings from the gaming community (NVIDIA, Microsoft)....
 - https://blogs.nvidia.com/blog/2018/03/21/
 (epic-games-reflections-ray-tracing-offers-peek-gdc)
 - https://www.youtube.com/watch?v=-zW3Ghz-WQw
 - https://www.youtube.com/watch?v=81E9yVU-KB8
 Scalars (before we talk about vectors!)

- Quantities that can be described by a magnitude (i.e., a single number)
Scalars

- Quantities that can be described by a magnitude (i.e., a single number)
 - this sack of potatoes weighs 5 kilos
 - distance between Utrecht and Amsterdam is 40.5 kms
 - the car is travelling with speed 50 km/h
 - numbers like $\pi = 3.14159\ldots$, $e = 2.71818\ldots$, $1/3$, $-1/\sqrt{2}$ etc.

- On a computer: int, float, double
Vectors

- Quantities that have not only a magnitude but also a direction
Vectors

- Quantities that have not only a magnitude but also a direction
 - Utrecht-Amsterdam example (40.5 kms in-between)
 - the velocity of an airplane
Vectors

- Quantities that have not only a magnitude but also a direction
 - Utrecht-Amsterdam example (40.5 kms in-between)

- One way to represent the U-A vector:
 - start at U and end at A; vector (the arrow!) spans the two
 - start-point (U): move 40.5 kms in 24° west of north
Vectors

- Quantities that have not only a magnitude but also a direction
 - Utrecht-Amsterdam example (40.5 kms in-between)

- Equivalent second way to represent the U-A vector:
 - start-point (U): move 37 kms north and 16.47 kms west
 ("north" and "west" are reference directions)
Reference directions ⇒ a co-ordinate system

- Number of reference directions = dimensionality of space
 - d-dimensional space $\equiv \mathbb{R}^d$; 2D $\equiv \mathbb{R}^2$, 3D $\equiv \mathbb{R}^3$...
Reference directions \Rightarrow a co-ordinate system

- Number of reference directions = dimensionality of space
 d-dimensional space $\equiv \mathbb{R}^d$; 2D $\equiv \mathbb{R}^2$, 3D $\equiv \mathbb{R}^3$...

- Cartesian co-ordinate system
 in 3D:
 (reference directions \perp to each other)
Reference directions ⇒ a co-ordinate system

- **Cartesian co-ordinate system**
 - in 3D:
 - A point P is represented by (x, y) co-ordinates in two dimensions
 - by (x, y, z) co-ordinates in three-dimensions
 - by (x_1, x_2, \ldots, x_d) co-ordinates in d dimensions

- **Origin of a co-ordinate system**: all entries of P are zero
Reference directions \Rightarrow a co-ordinate system

- Co-ordinate system does not have to be orthogonal/Cartesian!
Reference directions ⇒ a co-ordinate system

- Co-ordinate system does not have to be orthogonal/Cartesian!
Reference directions ⇒ a co-ordinate system

- Co-ordinate system does not have to be orthogonal/Cartesian!

- There are advantages for Cartesian co-ordinate systems (later)
Q. Latitude-longitude: is it a co-ordinate system?
A. Latitude-longitude: It is a co-ordinate system
Latitude-longitude: It is a co-ordinate system

Q. Is it orthogonal?
Latitude-longitude: It is a co-ordinate system

A. It is (locally) orthogonal
A point in a co-ordinate system

- Is represented as an array on a computer
A point in a co-ordinate system

- Is represented as an array on a computer
 - example in 5 dimensions \((d = 5) \): \(P = (73, 98, 86, 61, 96) \)
A vector in a co-ordinate system

- Like Utrecht → Amsterdam (37 kms N, 16.47 kms W)
A vector in a co-ordinate system

- Like Utrecht → Amsterdam (37 kms N, 16.47 kms W)
 - an example vector in 5 dimensions \((d = 5)\): \(\vec{v} = (73, 98, 86, 61, 96)\)
 is also represented as an array on the computer!

<table>
<thead>
<tr>
<th>arr[0]</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>arr[1]</td>
<td>98</td>
</tr>
<tr>
<td>arr[2]</td>
<td>86</td>
</tr>
<tr>
<td>arr[3]</td>
<td>61</td>
</tr>
<tr>
<td>arr[4]</td>
<td>96</td>
</tr>
</tbody>
</table>
A vector in a co-ordinate system

- Like Utrecht → Amsterdam (37 kms N, 16.47 kms W)
 - an example vector in 5 dimensions \((d = 5)\): \(\vec{v} = (73, 98, 86, 61, 96)\)
 is also represented as an array on the computer!

<table>
<thead>
<tr>
<th>arr[0]</th>
<th>73</th>
</tr>
</thead>
<tbody>
<tr>
<td>arr[1]</td>
<td>98</td>
</tr>
<tr>
<td>arr[2]</td>
<td>86</td>
</tr>
<tr>
<td>arr[3]</td>
<td>61</td>
</tr>
<tr>
<td>arr[4]</td>
<td>96</td>
</tr>
</tbody>
</table>

- So... what is the difference between a point and a vector?
A point (on a co-ordinate system) vs a vector (e.g., in 3D)
A point (on a co-ordinate system) vs a vector (e.g., in 3D)

- A vector does not specify the starting point!
 - it only specifies the length and the direction of the arrow
Summary so far...

- Scalar: Quantity represented by a magnitude (a single number)

- Vector: Quantity requiring a magnitude and a direction
 - to represent it, we need a co-ordinate system
 (a) does not have to be Cartesian
 (b) we will use Cartesian unless otherwise stated
 - number of reference directions = number of spatial dimensions
 - A point P is represented by (x_1, x_2, \ldots, x_d) in d spatial dimensions
 [by (x, y) in 2D and by (x, y, z) in 3D]
 - both points and vectors are represented by an array on a computer
 (a vector is however fundamentally different entity than a point)
Point and vector representation

• Point P: (x_1, x_2, \ldots, x_d) in d spatial dimensions

 - by (x, y) in 2D and by (x, y, z) in 3D

 \[
 \begin{bmatrix}
 v_1 \\
 v_2 \\
 \vdots \\
 v_d
 \end{bmatrix}
 \]

• Vector \vec{v}: in d spatial dimensions: vector notation

 \[
 \begin{bmatrix}
 v_x \\
 v_y \\
 \vdots \\
 v_z
 \end{bmatrix}
 \]

 - by $\begin{bmatrix} v_x \\ v_y \end{bmatrix}$ in 2D and by $\begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$ in 3D

 - the vector $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ spans the origin and the point (x, y, z) in 3D
Vector addition

(Only for vectors of the same dimension!)

- Vectors \(\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ . \\ . \\ u_d \end{bmatrix} \) and \(\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix} \)

- Vector \(\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ . \\ . \\ u_d + v_d \end{bmatrix} \)
Vector subtraction

(Only for vectors of the same dimension!)

- Vectors \(\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ . \\ . \\ u_d \end{bmatrix} \) and \(\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix} \)

- Vector \(\vec{u} - \vec{v} = \begin{bmatrix} u_1 - v_1 \\ u_2 - v_2 \\ . \\ . \\ u_d - v_d \end{bmatrix} \)

- \(\vec{u} - \vec{v} = 0 \Rightarrow \vec{u} = \vec{v} \Rightarrow u_1 = v_1, u_2 = v_2, \ldots, u_d = v_d \)
Vector addition and subtraction: example

• Addition: \(\vec{a} = \vec{u} + \vec{v} + \vec{w} \)

Example: \(\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \vec{w} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \)

• Subtraction: \(\vec{a} - \vec{w} \); reverse the direction of \(\vec{w} \) and vector-add to \(\vec{a} \) (i.e., to get \(-\vec{w}\) simply reverse the arrow)
Scalar multiplication of a vector

- Vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix}$, scalar λ

$\lambda \vec{v} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_d \end{bmatrix}$
Magnitude (length, or norm) of a vector

(Formulas below holds for Cartesian co-ordinate system only!)

Vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$; magnitude (norm) $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2}$

2D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2}$; 3D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2}$

($||\vec{v}||$ is the length of the arrow)
Magnitude (length/norm) of a vector, and unit vector

(Formulas below holds for Cartesian co-ordinate system only!)

- Vector \(\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix} \); magnitude (norm) \(||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2} \)

\(\text{2D: } ||\vec{v}|| = \sqrt{v_x^2 + v_y^2}, \text{ 3D: } ||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2} \)

(\(||\vec{v}|| \) is the length of the arrow)

- Corresponding unit vector \(\hat{v} = \frac{1}{||\vec{v}||} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix} \); you can confirm \(||\hat{v}|| = 1 \)

(this process is called normalisation)
Magnitude (length) of a vector, unit and basis vectors

(Formulas below hold for Cartesian co-ordinate system only!)

- Vector $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$; magnitude (norm) $||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2}$

 2D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2}$, 3D: $||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2}$

($||\vec{v}||$ is the length of the arrow)

- Corresponding unit vector $\hat{v} = \frac{1}{||\vec{v}||} \begin{bmatrix} v_1 \\ v_2 \\ . \\ . \\ v_d \end{bmatrix}$; you can confirm $||\hat{v}|| = 1$

 (this process is called normalisation)

 - unit vectors in reference directions $\hat{x}_1, \hat{x}_2, \ldots$ are the basis vectors (e.g., \hat{x}, \hat{y} and \hat{z} are the basis vectors in 3D; in vector notation?)
Magnitude (length) of a vector, unit and basis vectors

(Formulas below holds for Cartesian co-ordinate system only!)

- Vector \(\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix} \); magnitude (norm) \(||\vec{v}|| = \sqrt{v_1^2 + v_2^2 + \ldots + v_d^2} \)

 2D: \(||\vec{v}|| = \sqrt{v_x^2 + v_y^2} \), 3D: \(||\vec{v}|| = \sqrt{v_x^2 + v_y^2 + v_z^2} \)

 (\(||\vec{v}|| \) is the length of the arrow)

- Corresponding unit vector \(\hat{v} = \frac{1}{||\vec{v}||} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix} \); you can confirm \(||\hat{v}|| = 1 \)

 - unit vectors in reference directions \(\hat{x}_1, \hat{x}_2, \ldots \) are the basis vectors

- Why do we need a Cartesian co-ordinate system?
Pythagoras’ theorem and elementary trigometry
(works for Cartesian co-ordinate system only!)

- In 2D: basis vectors \hat{x}, \hat{y}; $\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$; $||\vec{v}||^2 = v_x^2 + v_y^2$ (Pythagoras)
Pythagoras’ theorem

\[a^2 + b^2 = c^2 \]

or

\[c = \sqrt{a^2 + b^2} \]
Pythagoras’ theorem

(below it works for Cartesian co-ordinate system only!)

- In 2D: basis vectors \hat{x}, \hat{y}; $\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$; $||\vec{v}||^2 = v_x^2 + v_y^2$

 e.g., $\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $||\vec{v}|| = \sqrt{3^2 + 4^2} = 5$
Pythagoras’ theorem

(below it works for Cartesian co-ordinate system only!)

- In 2D: basis vectors \(\hat{x}, \hat{y} \); \(\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} \); \(||\vec{v}||^2 = v_x^2 + v_y^2 \)

 e.g., \(\vec{v} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \), \(||\vec{v}|| = \sqrt{3^2 + 4^2} = 5 \)

- Pythagoras in \(d \) dimensions: \(||\vec{v}||^2 = v_1^2 + v_2^2 + \ldots + v_d^2 \)

- Null vector: vector of magnitude zero; \(v_1 = v_2 = \ldots = v_d = 0 \)
Cartesian co-ordinate system vectors and trigonometry

- In 2D: basis vectors \hat{x}, \hat{y}; $\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$; $||\vec{v}||^2 = v_x^2 + v_y^2$ (Pythagoras)

- $\cos \theta = \frac{v_x}{||\vec{v}||}$, $\sin \theta = \frac{v_y}{||\vec{v}||}$, $\tan \theta = \frac{v_y}{v_x}$

unit circle
Cartesian co-ordinate system vectors and trigonometry

- In 2D: basis vectors \hat{x}, \hat{y}; $\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$; $||\vec{v}||^2 = v_x^2 + v_y^2$ (Pythagoras)

- $\cos \theta = \frac{v_x}{||\vec{v}||}$, $\sin \theta = \frac{v_y}{||\vec{v}||}$, $\tan \theta = \frac{v_y}{v_x}$

- $v_x^2 + v_y^2 = ||\vec{v}||^2 \Rightarrow \sin^2 \theta + \cos^2 \theta = 1$

Q. What is \hat{v} in terms of θ? (think in terms of the unit circle!)

<table>
<thead>
<tr>
<th>Angle (°)</th>
<th>Degrees</th>
<th>(θ)</th>
<th>sin(θ)</th>
<th>cos(θ)</th>
<th>tan(θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>30°</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{\sqrt{3}}{2}$</td>
<td>$\frac{1}{\sqrt{3}}$</td>
<td></td>
</tr>
<tr>
<td>45°</td>
<td>$\frac{\pi}{4}$</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>$\frac{1}{\sqrt{2}}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>60°</td>
<td>$\frac{\pi}{3}$</td>
<td>$\frac{\sqrt{3}}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\sqrt{3}$</td>
<td></td>
</tr>
<tr>
<td>90°</td>
<td>$\frac{\pi}{2}$</td>
<td>1</td>
<td>0</td>
<td>Not Defined</td>
<td></td>
</tr>
</tbody>
</table>
Cartesian co-ordinate system vectors and trigonometry

- In 2D: basis vectors \(\hat{x}, \hat{y} \); \(\vec{v} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} \); \(||\vec{v}||^2 = v_x^2 + v_y^2 \) (Pythagoras)

- \(\cos \theta = \frac{v_x}{||\vec{v}||}, \sin \theta = \frac{v_y}{||\vec{v}||}, \tan \theta = \frac{v_y}{v_x} \)

- \(v_x^2 + v_y^2 = ||\vec{v}||^2 \) \Rightarrow \(\sin^2 \theta + \cos^2 \theta = 1 \)

A. \(\hat{v} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \)

<table>
<thead>
<tr>
<th>Angle (\theta)</th>
<th>(\sin(\theta))</th>
<th>(\cos(\theta))</th>
<th>(\tan(\theta))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0^\circ)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(30^\circ)</td>
<td>(\frac{\pi}{6})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{\sqrt{3}}{2})</td>
</tr>
<tr>
<td>(45^\circ)</td>
<td>(\frac{\pi}{4})</td>
<td>(\frac{1}{\sqrt{2}})</td>
<td>(\frac{1}{\sqrt{2}})</td>
</tr>
<tr>
<td>(60^\circ)</td>
<td>(\frac{\pi}{3})</td>
<td>(\frac{\sqrt{3}}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(90^\circ)</td>
<td>(\frac{\pi}{2})</td>
<td>0</td>
<td>Not Defined</td>
</tr>
</tbody>
</table>

44
The second summary...

- Vector operations
 - addition and subtraction (requires same dimensionality)
 - scalar multiplication
 - magnitude/length/norm of a vector; unit, null and basis vectors
 - Pythagoras theorem
 - elementary trigonometry: definitions of sin, cos, tan
The second summary...

● Vector operations
 – addition and subtraction (requires same dimensionality)
 – scalar multiplication
 – magnitude/length/norm of a vector; unit, null and basis vectors
 – Pythagoras theorem
 – elementary trigonometry: definitions of \(\sin \), \(\cos \), \(\tan \)

● Next class: vector algebra (contd.), and shooting rays to objects in 2D
Finally, references

- Book chapter 2: Miscellaneous Math
 - Sec. 2.3
 - Secs. 2.4.1-2.4.2, 2.4.5