PART 1 – MATH - max 36 points

1. [2+5=7 points] Given are two points: \(P = (1,2,3) \) and \(Q = (5,10,11) \) in \(\mathbb{R}^3 \), which lie on line \(L \).
 a. Write down the general implicit equation of a plane perpendicular to line \(L \).
 \[x + 2y + 2z + D = 0 \]
 b. We draw a line from point \(R = (3,8,5) \) that is perpendicular to line \(L \),
 intersecting it at point \(S \). Calculate the length of line segment \(RS \).
 \[\sqrt{8} = 2 \sqrt{2} \]

2. [3+3=6 points] Consider three points in \(\mathbb{R}^2 \): \(A = (1,1) \), \(B = (-3,4) \) and \(C = (1,7) \).
 a. We place a light at point \(C \). What is the length of the
 shadow of the line segment \(AB \) on the x-axis?
 \[\frac{28}{3} = 9 \frac{1}{3} \]
 b. We place a camera at point \(B \), viewing line segment \(AC \), rendering
 it on the y-axis as the one-dimensional ‘screen’ as \(A'C' \). What is the
 length of the line segment \(A'C' \)?
 \[9/2 = 4.5 \]

3. [1+5+3=9 points] Given: a sphere in \(\mathbb{R}^3 \), with centre \(C = (3,3,3) \) and a point on the surface of the sphere: \(P = (2,5,1) \).
 a. Write down the implicit eq. for the sphere.
 \[(x-3)^2 + (y-3)^2 + (z-3)^2 = 9 \]
 b. Calculate the point on the surface of the sphere closest to \((6,9,1) \).
 \((30/7,39/7,15/7) \)
 c. Unit vector \(\hat{u} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \) is a tangent vector of the sphere at point \(P \). Calculate the
 bitangent vector of the sphere at point \(P \).
 \[\begin{bmatrix} 2\sqrt{2} \\ 3 \\ 3\sqrt{2} \end{bmatrix} \]

4. [4 points] We define a coordinate system in \(\mathbb{R}^2 \) (i.e., x- and y-axes and the origin). Draw this coordinate system and shade the region for which two conditions hold: \(x + y > 1 \) and \(x + 1 < y \).
5. [3 points] Write down the implicit equation of the tangent plane to the sphere \((x - 3)^2 + (y - 4)^2 + z^2 = 9\) at point \(P = (5,5,2)\).
\[2x + y + 2z - 19 = 0\]

6. [2+1+4=7 points] Consider Figure 1 below, which depicts a situation in \(\mathbb{R}^2\). Given:

- Line \(P\), defined as \(x - 2y + 1 = 0\) and line \(Q\), defined as \(y - 2x - 3 = 0\)
- Points \(A\) and \(B\) on line \(Q\). The location of \(A\) is \((0,3)\). The length of line \(AB\) is \(w\).
- The points \(A\) and \(B\) are projected onto line \(P\) at \(A'\) and \(B'\) respectively, i.e. \(AA'\) and \(BB'\) are both perpendicular to line \(P\).

![Diagram of line P and Q](image)

a. Calculate the length of line segment \(AA'\).
\[\sqrt{5}\]

b. Determine the location of point \(A'\).
\[(1,1)\]

c. Express the length of \(A'B'\) as a function of \(w\).
\[4w/5\]

PART 2 – THEORY - max 10 points

7. [6 points] A texture is stored as a paletized image. The dimensions of the texture are 512 x 512 pixels, and it uses exactly 256 unique colors. How much memory (in bytes) is needed to store this texture?
\[512^2 + 1024 \text{ or } 512^2 + 768\]

8. [4 points] Complete the following sentence. Write down the four terms that complete the sentence on your answer sheet.

“The flickering and Moiré-patterns we see on distant textured objects are symptoms of **UNDERSAMPLING**. This problem can be reduced by using **MIPMAPPING**. When a textured object is close to the camera, the texture may appear blocky. This is caused by **OVERSAMPLING**. We can smooth out the blocky texture using **BILINEAR INTERPOLATION**.

Note: only the actual terms are allowed, descriptions score no points.