Approximate pattern matching under rigid motion

Hein Kruger

28 March 2006
Introduction

- Problem:
 given two sets A and B of points, line segments or (filled-in) polygons in \mathbb{R}^2, is there a subset of B that is an approximate copy of A, perhaps under some Euclidean transformation?

- Solution:
 find the smallest $\epsilon > 0$ such that some rigid motion brings every element of A to within a distance ϵ of B.

- one-way minimum Hausdorff distance problem:
 find the smallest $\epsilon > 0$ such that there is some Euclidean transformation g with $d_H(g(A), B) \leq \epsilon$ [Chew et al. 1997].

- $O(m^3n^2 \log^2 mn)$ for point patterns.

- $O(m^3n^3 \log^2 mn)$ for line segments.
Approach

- Solve decision problem for a given $\epsilon > 0$, is there a Euclidean transformation g such that $d_H(g(A), B) \leq \epsilon$?

- Use decision problem in binary search: similar to algorithm to approximate Frechet distance.

- Will only cover decision problem
Definitions and Notation

Let \(\{a_1, \ldots, a_m\} \) and \(\{b_1, \ldots, b_n\} \), be finite sets of points, line segments or (filled-in) triangles in \(\mathbb{R}^2 \). Now let \(A = \bigcup_{i=1}^{m} a_i \) and \(B = \bigcup_{i=1}^{n} b_i \).

- one-way Hausdorff distance decision problem: Given \(A \) and \(B \), and \(\epsilon > 0 \), is there a transformation \(g \in E_2 \) (where \(E_2 \) represents the set of all Euclidean transformations) such that \(\overrightarrow{d_H}(g(A), B) \leq \epsilon? \)
- \(B^\epsilon \) is the \(\epsilon \)-neighbourhood of \(B \): All points that lie within distance \(\epsilon \) of \(B \).
- \(B_i^\epsilon \) denotes the set of all translations that take \(a_i \) to within \(B^\epsilon \).
- We parameterise \(B_i^\epsilon \) by \(\theta \) (angle of rotation): \(B_i^\epsilon(\theta) \) is the set of all Euclidean transformations with fixed rotation of \(\theta \), that take \(a_i \) to within \(B^\epsilon \).
- a Euclidean transformation \(g \in E_2 \) such that \(\overrightarrow{d_H}(g(A), B) \leq \epsilon \) can be found if and only if \(\exists \theta \) such that

\[
S(\theta) = \bigcap_{i=1}^{m} B_i^\epsilon(\theta)
\]

is non-empty.
- Need to find \(\theta \) such that \(S(\theta) \neq \emptyset \).
Point Patterns

- B^ϵ is a union of discs.
- For given θ: $S(\theta) = \emptyset$ or the boundary of $S(\theta)$ consists of arcs of radius ϵ.
- Let $A(\theta)$ be the overlay of the boundaries of the sets $B_i^\epsilon(\theta)$.

Depth of a point p: number of $B_i^\epsilon(\theta)$ that contain p.
- $S(\theta) \neq \emptyset \iff$ some vertex of $A(\theta)$ has depth m.
- Sweep through transformation space from $\theta = 0$ to 2π. Similar to line sweep but sweep plane through $3D$ space.

- Keep track of the depth of the vertices of $A(\theta)$ as θ changes.

- Depth of vertices change at double and triple events:

- $O(m^2n^2)$ double events:
 $O(m^2n^2)$ pairs of discs, each pair touch at most twice

- $O(m^3n^2)$ triple events. Creation of Voronoi vertex of union of 3 transformed copies of B in transformation space. At most $O(n^2k^2 \log^* k)$. $k = 3$, $O(m^3)$ ways to choose sets.
Algorithm

- Determine event points.
- Sort event points.
- Compute depths of vertices of \(A(0) \).
- Store vertices with depths in balanced binary tree.
- Triple event:
 at most 3 vertices either increment or decrement depth by 1.
- Double event:
 Create or delete 2 vertices. Upon creation initialise depth based on neighbouring vertices on same circle. If no neighbours, depth is 2.
- If any vertex has depth \(m \): Stop, output “yes”. Otherwise, output “no” after last event point.
- Algorithm dominated by sorting \(O(m^3n^2) \) event points. Thus runtime is \(O(m^3n^2 \log mn) \).
Line Segments

- Similar approach as for point patterns
- B_i^ε not simply union of discs:
 Need to keep track of more information.
- Keep track of the boundaries of all the objects that make up each B_i^ε.
- An arc on the outer boundary of B_i^ε is a portion of a circle generated by endpoint from B and endpoint from A. $O(mn)$ such circles.
- A line segment on the outer boundary of B_i^ε is generated by endpoint or segment from B and endpoint or segment from A. $O(mn)$ such segments.
- W is set of all $O(mn)$ such circles or line segments.
- Useful boundaries in W: outer boundary of some B_i^ε:
 label to indicate i and keep track of which side of boundary lies inside B_i^ε.
Algorithm

- Construct W for $\theta = 0$.
- Determine coverage of each region ($O(m^2n^2 \log mn)$ time).
- Again consider double and triple events:
 - at most $\binom{mn}{2}$ double events
 - at most $\binom{mn}{3}$ triple events
 - can preprocess W to find events.
- Sort events.
- Coverage information can be updated in constant time per event:
 When a new region is created examine an adjacent region:
 - if boundary is not useful, coverage is the same as for adjacent region.
 - if boundary is useful, coverage is one more or less than adjacent region.
• Need to maintain labeling of boundaries:
 – \(W_i \) is portion of \(W \) associated \(B_i^\epsilon \)
 – \(W_i \) has \(O(n) \) circles and line segments
 \(O(n^3) \) double and triple events for \(W_i \) as \(\theta \) changes.
 – Easy to keep track of usefulness of boundaries of \(W_i \).

• Each boundary portion of \(W \) is subset of a boundary from some \(W_i \).

• link boundaries in \(W \) with corresponding boundaries in \(W_i \).
 – maintain usefulness information in \(W_i \)
 total of \(O(mn^3) \) updates.
 – update linking information for each double or triple event of \(W \).

• \(O(m^3n^3) \) update events for \(W \).

• \(O(mn^3) \) update events over all \(W_i \).

• Must sort these events to get ordering of updates correct.

• Thus algorithm is \(O(m^3n^3 \log mn) \) overall.
Solid triangles and polygons

- Same method used for line segments can be used for solid triangles: only need to consider line segments that make up boundaries.
- Can triangulate polygons, and use same algorithm
References