Point location

Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision containing q can be given quickly (name of the face)

- From GPS coordinates, find the region on a map where you are located
- Subroutine for many other geometric problems (Chapter 13: motion planning, or shortest path computation)
Planar subdivision: Partition of the plane by a set of non-crossing line segments into vertices, edges, and faces

non-crossing: disjoint, or at most a shared endpoint
Data structuring question, so interest in query time, storage requirements, and preprocessing time

To store: set of \(n \) non-crossing line segments and the subdivision they induce
First solution

Idea: Draw vertical lines through all vertices, then do something for every vertical strip that appears
First solution
In one strip

Inside a single strip, there is a well-defined bottom-to-top order on the line segments.

Use this for a balanced binary search tree that is valid if the query point is in this strip (knowing between which edges we are is knowing in which face we are).
Solution with strips

search tree on x-coordinate
Solution with strips

To answer a query with $q = (q_x, q_y)$, search in the main tree with q_x to find a leaf, then follow the pointer to search in the tree that is correct for the strip that contains q_x.

Question: What are the storage requirements and what is the query time of this structure?
Solution with strips

\[\frac{n}{4} \text{ strips} \]
Solution with strips
The vertical strips idea gave a *refinement* of the original subdivision, but the number of faces went up from linear in n to quadratic in n.

Is there a different refinement whose size remains linear, but in which we can still do point location queries easily?
Vertical decomposition

Suppose we draw vertical extensions from every vertex up and down, *but only until the next line segment*

- Assume the input line segments are not vertical
- Assume every vertex has a distinct x-coordinate
- Assume we have a bounding box R that encloses all line segments that define the subdivision

This is called the *vertical decomposition* or *trapezoidal decomposition*
Vertical decomposition
The vertical decomposition has triangular and trapezoidal faces
Vertical decomposition faces

Every face has a vertical left and/or right side that is a vertical extension, and is bounded from above and below by some line segment of the input.

The left and right sides are defined by some endpoint of a line segment.

\[\text{leftp}(\Delta) \quad \Delta \quad \text{rightp}(\Delta) \]

\[\text{top}(\Delta) \quad \text{bottom}(\Delta) \]
Vertical decomposition faces

Every face is defined by no more than four line segments.

For any face, we ignore vertical extensions that end on top(Δ) and bottom(Δ).
Two trapezoids (including triangles) are *neighbors* if they share a vertical side.

Each trapezoid has 1, 2, 3, or 4 neighbors.
Neighbors of faces

A trapezoid could have many neighbors if vertices had the same x-coordinate
We could use a DCEL to represent a vertical decomposition, but we use a more direct & convenient structure

- Every face \(\Delta \) is an object; it has fields for \(\text{top}(\Delta) \), \(\text{bottom}(\Delta) \), \(\text{leftp}(\Delta) \), and \(\text{rightp}(\Delta) \) (two line segments and two vertices)
- Every face has fields to access its up to four neighbors
- Every line segment is an object and has fields for its endpoints (vertices) and the name of the face in the original subdivision directly above it
- Each vertex stores its coordinates
Representation

\[
\begin{array}{c}
\text{R}
\end{array}
\]
Any trapezoid Δ can find out the name of the face it is part of via $\text{bottom}(\Delta)$ and the stored name of the face.
A vertical decomposition of n non-crossing line segments inside a bounding box R, seen as a proper planar subdivision, has at most $6n + 4$ vertices and at most $3n + 1$ trapezoids.
The input to planar point location is a planar subdivision, for example in DCEL format

First, store with each edge the name of the face above it (our structure will find the edge below any query point)

Then extract the edges to define a set S of non-crossing line segments; ignore the DCEL otherwise
Point location solution

We will use *randomized incremental construction* to build, for a set S of non-crossing line segments,

- a vertical decomposition T of S and R
- a search structure D whose leaves correspond to the trapezoids of T

The simple idea: Start with R, then add the line segments in random order and maintain T and D
Point location solution

Let s_1, \ldots, s_n be the n line segments in random order

Let T_i be the vertical decomposition of R and s_1, \ldots, s_i, and let D_i be the search structure obtained by inserting s_1, \ldots, s_i in this order.
Let s_1, \ldots, s_n be the n line segments in random order

Let T_i be the vertical decomposition of R and s_1, \ldots, s_i, and let D_i be the search structure obtained by inserting s_1, \ldots, s_i in this order.
The search structure D has x-nodes, which store an endpoint, and y-nodes, which store a line segment s_j.

For any query point t, we only test at an x-node: Is t left or right of the vertical line through the stored point?

For any query point t, we only test at an y-node: Is t below or above the stored line segment?

We will guarantee that the question at a y-node is only asked if the query point t is between the vertical lines through p_j and q_j, if line segment $s_j = p_jq_j$ is stored.
Point location solution

\[\Delta_1 \]
\[s_1 \]
\[p_1 \]
\[q_1 \]
\[\Delta_2 \]
\[\Delta_3 \]
\[\Delta_4 \]

\[T_1 \]
\[D_1 \]
\[p_1 \]
\[q_1 \]
\[s_1 \]

\[R \]
\[\Delta_1 \]
\[\Delta_2 \]
\[\Delta_3 \]
\[\Delta_4 \]
Point location solution

\[\Delta_1 \quad \Delta_2 \quad \Delta_3 \quad \Delta_4 \]

\[s_1 \quad p_1 \quad q_1 \]

\[s_2 \quad p_2 \quad q_2 \]

\[T_1 \quad D_1 \quad p_1 \quad q_1 \quad s_1 \]

\[R \quad \Delta_1 \quad \Delta_2 \quad \Delta_3 \quad \Delta_4 \]
Point location solution

The search structure
Updating the vertical decomposition
Updating the search structure

Computational Geometry
Lecture 9: Planar point location
Point location solution

The search structure
Updating the vertical decomposition
Updating the search structure

Introduction
Vertical decomposition
Analysis

Computational Geometry
Lecture 9: Planar point location
Point location solution

- **Introduction**
- Vertical decomposition
- Analysis
- The search structure
- Updating the vertical decomposition
- Updating the search structure

Computational Geometry

Lecture 9: Planar point location
Point location solution

We want only one leaf in D to correspond to each trapezoid; this means we get a search graph instead of a search tree.

It is a directed acyclic graph, or DAG, hence the name D.
Point location solution

The search structure

Updating the vertical decomposition

Updating the search structure

Computational Geometry

Lecture 9: Planar point location
A point location query is done by following a path in the search structure D to a leaf, then following its pointer to a trapezoid of T, then accessing $\text{bottom}(\ldots)$ of this trapezoid, and reporting the name of the face stored with it.
Point location query

\[\Delta_1, \Delta_3, \Delta_8, \Delta_9, \Delta_5, \Delta_6, \Delta_7 \]

\[p_1, q_1, p_2, q_2 \]

\[s_1, s_2 \]

\[T_2, D_2 \]
Suppose we have D_{i-1} and T_{i-1}, how do we add s_i?

Because D_{i-1} is a valid point location structure for s_1, \ldots, s_{i-1}, we can use it to find the trapezoid of T_{i-1} that contains p_i, the left endpoint of s_i.

Then we use T_{i-1} to find all other trapezoids that intersect s_i.
Find intersected trapezoids

\[\Delta_0 \]

\[p_i \]

\[s_i \]

\[q_i \]
Find intersected trapezoids

\[\Delta_0 \]

\[p_i \]

\[s_i \]

\[q_i \]
Find intersected trapezoids

\[\Delta_0 \quad \Delta_1 \quad \Delta_2 \quad \Delta_3 \quad \Delta_4 \quad \Delta_5 \quad \Delta_6 \quad \Delta_7 \]

\(p_i \quad s_i \quad q_i \)
Find intersected trapezoids
Find intersected trapezoids

After locating the trapezoid that contains p_i, we can determine all k trapezoids that intersect s_i in $O(k)$ time by traversing T_{i-1}.
Updating the vertical decomposition
Updating the vertical decomposition

\[\Delta_0, \Delta_1, \Delta_2, \Delta_3, \Delta_4, \Delta_5, \Delta_6, \Delta_7 \]
Updating the vertical decomposition
We can update the vertical decomposition in $O(k)$ time as well.
The search structure has \(k \) leaves that are no longer valid as leaves; they become internal nodes.

We find these using the pointers from \(T_{i-1} \) to \(D_{i-1} \).

From the update of the vertical decomposition \(T_{i-1} \) into \(T_i \) we know what new leaves we must make for \(D_i \).

All new nodes besides the leaves are \(x \)-nodes with \(p_i \) and \(q_i \) and \(y \)-nodes with \(s_i \).
Updating the search structure
Updating the search structure

leaves for the new trapezoids in T_i
Updating the search structure

D_{i-1}

T_i

leaves for the new trapezoids in T_i
Updating the search structure

T_i

D_{i-1}

Leaves for the new trapezoids in T_i
Observations

For a single update step, adding s_i and updating T_{i-1} and D_{i-1}, we observe:

- If s_i intersects k_i trapezoids of T_{i-1}, then we will create $O(k_i)$ new trapezoids in T_i.
- We find the k_i trapezoids in time linear in the search path of p_i in D_{i-1}, plus $O(k_i)$ time.
- We update by replacing k_i leaves by $O(k_i)$ new internal nodes and $O(k_i)$ new leaves.
- The maximum depth increase is three nodes.
Questions

Question: In what case is the depth increase three nodes?

Question: We noticed that the directed acyclic graph D is binary in its out-degree, what is the maximum in-degree?
A common but special update

If p_i was already an existing vertex, we search in D_{i-1} with a point a fraction to the right of p_i on s_i.
Randomized incremental construction, where does it matter?

- The vertical decomposition T_i is independent of the insertion order among s_1, \ldots, s_i
- The search structure D_i can be different for many orders of s_1, \ldots, s_i
- The number of nodes in D_i depends on the order
- The depth of search paths in D_i depends on the order
Randomized incremental construction
Randomized incremental construction

$p_1

q_1

s_1

p_2

q_2

s_2

p_3

q_3

s_3

p_4

q_4

s_4

p_5

q_5

s_5

s_1s_2 s_3 s_4 s_5
Randomized incremental construction
Storage of the structure

The vertical decomposition structure T always uses linear storage.

The search structure D can use anything between linear and quadratic storage.

We analyse the expected number of new nodes when adding s_i, using backwards analysis (of course).
Backwards analysis in this case: Suppose we added s_i and have computed T_i and D_i. All line segments (existing in T_i) had the same probability of having been the last one added.
For each of the i line segments, we can see how many trapezoids would have been created if it were the last one added.
For each of the i line segments, we can see how many trapezoids would have been created if it were the last one added.
For each of the i line segments, we can see how many trapezoids would have been created if it were the last one added.
Storage of the structure

The number of created trapezoids is linear in the number of deleted trapezoids (leaves of D_{i-1}), or intersected trapezoids by s_i in T_{i-1}; this is linear in k_i.

We will analyze

$$K_i = \sum_{j=1}^{i} \text{[no. of trapezoids created if } s_j \text{ were last]}$$
Consider K_i from the "trapezoid perspective": For any trapezoid Δ, there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ)).
Consider K_i from the “trapezoid perspective”: For any trapezoid Δ, there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ)).
Consider K_i from the “trapezoid perspective”: For any trapezoid Δ, there are at most four line segments whose insertion would have created it (top(Δ), bottom(Δ), leftp(Δ), and rightp(Δ)).
We know: There are at most $3i + 1$ trapezoids in a vertical decomposition of i line segments in R

Hence,

$$K_i = \sum_{\Delta \in T_i} \text{[no. of segments that would create } \Delta]\]$$

$$\leq \sum_{\Delta \in T_i} 4 = 12i + 4$$
Since K_i is defined as a sum over i line segments, the average number of trapezoids in T_i created by s_i is at most $(12i + 4)/i \leq 13$.

Since the expected number of new nodes is at most 13 in every step, the expected size of the structure after adding n line segments is $O(n)$.
Query time of the structure

Fix any point q in the plane as a query point, we will analyze the probability that inserting s_i makes the search path to q longer.
Backwards analysis: Take the situation after s_i has been added, and ask the question: How many of the i line segments made the search path to q longer?
Backwards analysis: Take the situation after s_i has been added, and ask the question: How many of the i line segments made the search path to q longer?

The search path to q only became longer if q is in a trapezoid that was *just created* by the latest insertion!

At most four line segments define the trapezoid that contains q, so the probability is $4/i$.
We analyze

\[\sum_{i=1}^{n} \text{[search path became longer due to } i\text{-th addition]} \]

\[\leq \sum_{i=1}^{n} \frac{4}{i} = 4 \cdot \sum_{i=1}^{n} \frac{1}{i} \leq 4(1 + \log_e n) \]

So the expected query time is \(O(\log n) \)
Theorem: Given a planar subdivision defined by a set of n non-crossing line segments in the plane, we can preprocess it for planar point location queries in $O(n \log n)$ expected time, the structure uses $O(n)$ expected storage, and the expected query time is $O(\log n)$.