Computational Geometry

Lecture 8: Range trees
Database queries

A database query may ask for all employees with age between a_1 and a_2, and salary between s_1 and s_2.

![Diagram](image-url)
Theorem: A set of n points on the real line can be preprocessed in $O(n \log n)$ time into a data structure of $O(n)$ size so that any 1D range [counting] query can be answered in $O(\log n [+k])$ time.
Theorem: A set of *n* points in the plane can be preprocessed in $O(n \log n)$ time into a data structure of $O(n)$ size so that any 2D range query can be answered in $O(\sqrt{n} + k)$ time, where *k* is the number of answers reported.

For range counting queries, we need $O(\sqrt{n})$ time.
Can we achieve $O(\log n [+k])$ query time?
Can we achieve $O(\log n [+k])$ query time?
Faster queries

If the corners of the query rectangle fall in specific cells of the grid, the answer is fixed (even for lower left and upper right corner)
Faster queries

Build a tree so that the leaves correspond to the different possible query rectangle types (corners in same cells of grid), and with each leaf, store all answers (points) [or: the count]

Build a tree on the different x-coordinates (to search with left side of R), in each of the leaves, build a tree on the different x-coordinates (to search with the right side of R), in each of the leaves, ...
Faster queries
Question: What are the storage requirements of this structure, and what is the query time?
Faster queries

Recall the 1D range tree and range query:

- Two search paths (grey nodes)
- Subtrees in between have answers exclusively (black)
A 1-dimensional range query with $[25, 90]$
Example 1D range query

A 1-dimensional range query with $[61, 90]$
Examining 1D range queries

Observation: Ignoring the search path leaves, all answers are jointly represented by the highest nodes strictly between the two search paths

Question: How many highest nodes between the search paths can there be?
For any 1D range query, we can identify $O(\log n)$ nodes that together represent all answers to a 1D range query.
For any 2d range query, we can identify $O(\log n)$ nodes that together represent all points that have a correct first coordinate.
Toward 2D range queries

```
(3,8) (1,5) (4,2) (5,9) (6,7) (7,3) (8,1) (9,4)
```
Toward 2D range queries

(3, 8) (1, 5) (4, 2) (5, 9) (6, 7) (7, 3) (8, 1) (9, 4)
Toward 2D range queries

A data structure for searching on y-coordinate.
Toward 2D range queries

(introduction)

2D Range trees

Degenerate cases

Range queries

(3, 8)
(1, 5)
(4, 2)
(5, 9)
(6, 7)
(8, 1)
(7, 3)
(9, 4)
Every internal node stores a whole tree in an *associated structure*, on y-coordinate.

Question: How much storage does this take?
Storage of 2D range trees

To analyze storage, two arguments can be used:

- **By level:** On each level, any point is stored exactly once. So all associated trees on one level together have $O(n)$ size.
- **By point:** For any point, it is stored in the associated structures of its search path. So it is stored in $O(\log n)$ of them.
Algorithm Build2DRangeTree(P)
1. Construct the associated structure: Build a binary search tree \(T_{assoc} \) on the set \(P_y \) of y-coordinates in \(P \)
2. if \(P \) contains only one point
3. then Create a leaf \(\nu \) storing this point, and make \(T_{assoc} \) the associated structure of \(\nu \).
4. else Split \(P \) into \(P_{left} \) and \(P_{right} \), the subsets \(\leq \) and \(> \) the median \(x \)-coordinate \(x_{mid} \)
5. \(\nu_{left} \leftarrow \text{Build2DRangeTree}(P_{left}) \)
6. \(\nu_{right} \leftarrow \text{Build2DRangeTree}(P_{right}) \)
7. Create a node \(\nu \) storing \(x_{mid} \), make \(\nu_{left} \) the left child of \(\nu \), make \(\nu_{right} \) the right child of \(\nu \), and make \(T_{assoc} \) the associated structure of \(\nu \)
8. return \(\nu \)
Efficiency of construction

The construction algorithm takes $O(n \log^2 n)$ time

$$T(1) = O(1)$$

$$T(n) = 2 \cdot T(n/2) + O(n \log n)$$

which solves to $O(n \log^2 n)$ time
Suppose we pre-sort P on y-coordinate, and whenever we split P into P_{left} and P_{right}, we keep the y-order in both subsets.

For a sorted set, the associated structure can be built in linear time.
The adapted construction algorithm takes $O(n \log n)$ time

\[T(1) = O(1) \]

\[T(n) = 2 \cdot T(n/2) + O(n) \]

which solves to $O(n \log n)$ time
2D range queries

How are queries performed and why are they correct?

- Are we sure that each answer is found?
- Are we sure that the same point is found only once?
2D range queries

\[\nu \]

\[\mu, \mu' \]

\[p \]

\[\nu \]

\[\mu, \mu' \]

\[p \]

\[p \]
Algorithm 2D\textsc{RangeQuery}(T, [x : x'] \times [y : y'])

1. $\nu_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x')$
2. \textbf{if} ν_{split} is a leaf \textbf{then} report the point stored at ν_{split}, if an answer
3. \textbf{else} $\nu \leftarrow lc(\nu_{\text{split}})$
4. \textbf{while} ν is not a leaf \textbf{do if} $x \leq x_{\nu}$
5. \textbf{then} 1D\textsc{RangeQ}(T_{\text{assoc}}(rc(\nu)), [y : y'])
6. \textbf{else} $\nu \leftarrow rc(\nu)$
7. \textbf{Check if the point stored at} ν \textbf{must be reported.}
8. \textbf{Similarly, follow the path from} $rc(\nu_{\text{split}})$ \textbf{to} x' ...
Question: How much time does a 2D range query take?

Subquestions: In how many associated structures do we search? How much time does each such search take?
2D range queries

\[\nu \]

\[\mu \]

\[\mu' \]
We search in $O(\log n)$ associated structures to perform a 1D range query; at most two per level of the main tree.

The query time is $O(\log n) \times O(\log m + k')$, or

$$
\sum_{\nu} O(\log n_{\nu} + k_{\nu})
$$

where $\sum k_{\nu} = k$ the number of points reported.
Use the concept of grey and black nodes again:
The number of grey nodes is $O(\log^2 n)$

The number of black nodes is $O(k)$ if k points are reported

The query time is $O(\log^2 n + k)$, where k is the size of the output
Theorem: A set of \(n \) points in the plane can be preprocessed in \(O(n \log n) \) time into a data structure of \(O(n \log n) \) size so that any 2D range query can be answered in \(O(\log^2 n + k) \) time, where \(k \) is the number of answers reported.

Recall that a kd-tree has \(O(n) \) size and answers queries in \(O(\sqrt{n} + k) \) time.
Efficiency

<table>
<thead>
<tr>
<th>n</th>
<th>$\log n$</th>
<th>$\log^2 n$</th>
<th>\sqrt{n}</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>64</td>
<td>6</td>
<td>36</td>
<td>8</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>1024</td>
<td>10</td>
<td>100</td>
<td>32</td>
</tr>
<tr>
<td>4096</td>
<td>12</td>
<td>144</td>
<td>64</td>
</tr>
<tr>
<td>16384</td>
<td>14</td>
<td>196</td>
<td>128</td>
</tr>
<tr>
<td>65536</td>
<td>16</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>1M</td>
<td>20</td>
<td>400</td>
<td>1K</td>
</tr>
<tr>
<td>16M</td>
<td>24</td>
<td>576</td>
<td>4K</td>
</tr>
</tbody>
</table>
Question: How about range *counting* queries?
A d-dimensional range tree has a main tree which is a one-dimensional balanced binary search tree on the first coordinate, where every node has a pointer to an associated structure that is a $(d - 1)$-dimensional range tree on the other coordinates.
The size $S_d(n)$ of a d-dimensional range tree satisfies:

$$S_1(n) = O(n) \quad \text{for all } n$$

$$S_d(1) = O(1) \quad \text{for all } d$$

$$S_d(n) \leq 2 \cdot S_d(n/2) + S_{d-1}(n) \quad \text{for } d \geq 2$$

This solves to $S_d(n) = O(n \log^{d-1} n)$
The number of grey nodes $G_d(n)$ satisfies:

$$G_1(n) = O(\log n) \quad \text{for all } n$$

$$G_d(1) = O(1) \quad \text{for all } d$$

$$G_d(n) \leq 2 \cdot \log n + 2 \cdot \log n \cdot G_{d-1}(n) \quad \text{for } d \geq 2$$

This solves to $G_d(n) = O(\log^d n)$
Theorem: A set of n points in d-dimensional space can be preprocessed in $O(n \log^{d-1} n)$ time into a data structure of $O(n \log^{d-1} n)$ size so that any d-dimensional range query can be answered in $O(\log^d n + k)$ time, where k is the number of answers reported.

Recall that a kd-tree has $O(n)$ size and answers queries in $O(n^{1-1/d} + k)$ time.
Comparison for $d = 4$

<table>
<thead>
<tr>
<th>n</th>
<th>$\log n$</th>
<th>$\log^4 n$</th>
<th>$n^{3/4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>10</td>
<td>10,000</td>
<td>181</td>
</tr>
<tr>
<td>65,536</td>
<td>16</td>
<td>65,536</td>
<td>4096</td>
</tr>
<tr>
<td>1M</td>
<td>20</td>
<td>160,000</td>
<td>32,768</td>
</tr>
<tr>
<td>1G</td>
<td>30</td>
<td>810,000</td>
<td>5,931,641</td>
</tr>
<tr>
<td>1T</td>
<td>40</td>
<td>2,560,000</td>
<td>1G</td>
</tr>
</tbody>
</table>
We can improve the query time of a 2D range tree from $O(\log^2 n)$ to $O(\log n)$ by a technique called fractional cascading.

This automatically lowers the query time in d dimensions to $O(\log^{d-1} n)$ time.
The idea illustrated best by a *different* query problem:

Suppose that we have a collection of sets S_1, \ldots, S_m, where $|S_1| = n$ and where $S_{i+1} \subseteq S_i$

We want a data structure that can report for a query number x, the smallest value $\geq x$ in all sets S_1, \ldots, S_m
Improving the query time

\[S_1 \]

\[S_2 \]

\[S_3 \]

\[S_4 \]
Improving the query time

The diagram illustrates the construction of a range tree, with levels labeled S_1, S_2, S_3, and S_4. The tree is built to efficiently answer range queries in a 2D space.
Improving the query time

1 2 3 5 8 13 21 34 55
1 3 5 8 13 21 34 55
1 3 13 34 55
3 34 55
21

\(S_1 \)

\(S_2 \)

\(S_3 \)

\(S_4 \)
Suppose that we have a collection of sets S_1, \ldots, S_m, where $|S_1| = n$ and where $S_{i+1} \subseteq S_i$. We want a data structure that can report for a query number x, the smallest value $\geq x$ in all sets S_1, \ldots, S_m.

This query problem can be solved in $O(\log n + m)$ time instead of $O(m \cdot \log n)$ time.
Can we do something similar for m 1-dimensional range queries on m sets S_1, \ldots, S_m?

We hope to get a query time of $O(\log n + m + k)$ with k the total number of points reported.
Improving the query time

- S_1
- S_2
- S_3
- S_4
Improving the query time

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 13 \rightarrow 21 \rightarrow 34 \rightarrow 55 \]

\[S_1 \]

\[1 \rightarrow 3 \rightarrow 5 \rightarrow 8 \rightarrow 13 \rightarrow 21 \rightarrow 34 \rightarrow 55 \]

\[S_2 \]

\[1 \rightarrow 3 \rightarrow 13 \rightarrow 21 \rightarrow 34 \rightarrow 55 \]

\[S_3 \]

\[3 \rightarrow 34 \rightarrow 55 \]

\[S_4 \]
Improving the query time
Fractional cascading

Now we do “the same” on the associated structures of a 2-dimensional range tree.

Note that in every associated structure, we search with the same values y and y':

- Replace all associated structures except for the one of the root by a linked list.
- For every list element (and leaf of the associated structure of the root), store two pointers to the appropriate list elements in the lists of the left child and of the right child.
Fractional cascading
Fractional cascading
Fractional cascading

(2, 19) (7, 10) (12, 3) (17, 62) (21, 49) (41, 95) (58, 59) (93, 70)
(5, 80) (8, 37) (15, 99) (33, 30) (52, 23) (67, 89)
Fractional cascading
Fractional cascading

\[[4, 58] \times [19, 65] \]
Fractional cascading
Fractional cascading
Fractional cascading

Instead of doing a 1D range query on the associated structure of some node v, we find the leaf where the search to y would end in $O(1)$ time via the direct pointer in the associated structure in the parent of v.

The number of grey nodes reduces to $O(\log n)$.
Theorem: A set of n points in d-dimensional space can be preprocessed in $O(n \log^{d-1} n)$ time into a data structure of $O(n \log^{d-1} n)$ size so that any d-dimensional range query can be answered in $O(\log^{d-1} n + k)$ time, where k is the number of answers reported.

Recall that a kd-tree has $O(n)$ size and answers queries in $O(n^{1 - 1/d} + k)$ time.
Both for kd-trees and for range trees we have to take care of multiple points with the same x- or y-coordinate.
Degenerate cases

Both for kd-trees and for range trees we have to take care of multiple points with the same x- or y-coordinate.
Degenerate cases

Treat a point $p = (p_x, p_y)$ with two reals as coordinates as a point with two composite numbers as coordinates.

A composite number is a pair of reals, denoted $(a|b)$.

We let $(a|b) < (c|d)$ iff $a < c$ or $(a = c$ and $b < d)$; this defines a total order on composite numbers.
Degenerate cases

The point \(p = (p_x, p_y) \) becomes \(((p_x|p_y), (p_y|p_x))\). Then no two points have the same first or second coordinate.

The median \(x\)-coordinate or \(y\)-coordinate is a composite number.

The query range \([x : x'] \times [y : y']\) becomes

\[
[(x| - \infty) : (x'| + \infty)] \times [(y| - \infty) : (y'| + \infty)]
\]

We have \((p_x, p_y) \in [x : x'] \times [y : y'] \) iff

\[
((p_x|p_y), (p_y|p_x)) \in [(x| - \infty) : (x'| + \infty)] \times [(y| - \infty) : (y'| + \infty)]
\]