Cutting Trees

Given a set of n points P in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) points from P that lie in a query triangle Q.
Cutting Trees

Given a set of n points P in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) points from P that lie in a query half plane h.
Cutting Trees

Given a set of n points P in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) points from P that lie in a query half plane h

dualize the problem

Given a set of n lines P^* in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) lines from P^* that lie below a query point q^*
Cutting Trees

Given a set of n points P in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) points from P that lie in a query half plane h.

dualize the problem

Given a set of n lines P^* in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) lines from P^* that lie below a query point q^*.

build the arrangement A, store the answer for every face, and preprocess A for point location

$O(n^2)$ space, $O(\log n)$ query.
Cutting Trees

Given a set of n points P in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) points from P that lie in a query half plane h

dualize the problem

Given a set of n lines P^* in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) lines from P^* that lie below a query point q^*

build the arrangement A, store the answer for every face, and preprocess A for point location

$O(n^2)$ space, $O(\log n)$ query.

Problem. Does not generalize to query triangles: too many possible answers
Cutting Trees

Given a set of \(n \) lines \(L \) in \(\mathbb{R}^2 \). Store them in a data structure s.t. we can efficiently report the (number of) lines from \(L \) that lie below a query point \(q \).

Main idea. partition the plane into disjoint triangles
Cutting Trees

Given a set of n lines L in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) lines from L that lie below a query point q.

Main idea. partition the plane into disjoint triangles

consider such a triangle Δ

ℓ above $\Delta \iff \ell$ is above q for all points $q \in \Delta$
Cutting Trees

Given a set of n lines L in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) lines from L that lie below a query point q.

Main idea. partition the plane into disjoint triangles

consider such a triangle Δ

ℓ above $\Delta \iff \ell$ is above q for all points $q \in \Delta$

$L^+_\Delta =$ upper canonical subset of Δ: the subset of lines that passes above Δ.

$L^-_\Delta =$ lower canonical subset of Δ: the subset of lines that passes below Δ.

$C_\Delta =$ crossing subset of Δ: the subset of lines that intersect Δ.

Cutting Trees

Given a set of n lines L in \mathbb{R}^2. Store them in a data structure s.t. we can efficiently report the (number of) lines from L that lie below a query point q

Main idea. partition the plane into disjoint triangles

consider such a triangle Δ

ℓ above $\Delta \iff \ell$ is above q for all points $q \in \Delta$

$L^+_{\Delta} =$ upper canonical subset of Δ: the subset of lines that passes above Δ.

$L^-_{\Delta} =$ lower canonical subset of Δ: the subset of lines that passes below Δ.

$C_{\Delta} =$ crossing subset of Δ: the subset of lines that intersect Δ.

$q \in \Delta \implies$ we have found $|C^-_{\Delta}|$ lines below q, and we have to recurse only on C_{Δ}
Question. What is a good partition?

1) it should be small (i.e. low complexity)
2) every cell should intersect few lines
Cutting Trees

Question. What is a good partition?

1) it should be small (i.e. low complexity)
2) every cell should intersect few lines

$L = \text{a set of } n \text{ lines}$

$r = \text{a parameter in the range } 1..n$

$\Lambda(L) = \{\Delta_1, \ldots, \Delta_m\}$ is a \((1/r)\)-cutting for L of size m if and only if every triangle Δ_i is intersected by at most n/r lines from L

and all triangles Δ_i are pairwise disjoint
Cutting Trees

Question. What is a good partition?

1) it should be small (i.e. low complexity)
2) every cell should intersect few lines

\[\Lambda(L) = \{\Delta_1, \ldots, \Delta_m\} \text{ is a } (1/r)-\text{cutting for } L \text{ of size } m \text{ if and only if every triangle } \Delta_i \text{ is intersected by at most } n/r \text{ lines from } L \]

and all triangles \(\Delta_i \) are pairwise disjoint

Thm. For any \(r \in [1..n] \) there is a \((1/r)-\text{cutting of size } O(r^2)\).
Cutting Trees

Question. What is a good partition?

1) it should be small (i.e. low complexity)
2) every cell should intersect few lines

$L = \text{a set of } n \text{ lines}$
$r = \text{a parameter in the range } 1..n$

$\Lambda(L) = \{\Delta_1, .., \Delta_m\}$ is a $(1/r)$-cutting for L of size m if and only if every triangle Δ_i is intersected by at most n/r lines from L

and all triangles Δ_i are pairwise disjoint

Thm. For any $r \in [1..n]$ there is a $(1/r)$-cutting of size $O(r^2)$.

Moreover, such a cutting (with for each triangle Δ the lines C_Δ that cross it), can be constructed in $O(nr)$ time.
A cutting tree T is a tree with root u that has $O(r^2)$-children: each child $v = v_i$ corresponds to a triangle $\Delta_v = \Delta_i$ of a $(1/r)$-cutting $\Lambda(L)$.

Every node v stores $\Delta = \Delta_v$ and information about $L^+_{\Delta} = L^+_v$ and $L^-_{\Delta} = L^-_v$, e.g. their size.

v is the root of a recursively defined cutting tree T_v on C_Δ

if $L = \{\ell\}$ then T is a leaf node v, with canonical subset $L_v = P$.

![Diagram of a cutting tree](image)
Cutting Trees

Given a query point q, a cutting tree T on L can report a set of nodes V such that the set of lines X below q is the disjoint union of the sets L_v^-, for $v \in V$.

SelectBelowPoint(q, T)
1. $V \leftarrow \emptyset$
2. if the root u is a leaf node storing ℓ then
3. if ℓ below q then add u to V
4. else find the child v of u for which $q \in \Delta_v$
5. $V \leftarrow V \cup \{v\} \cup \text{SelectBelowPoint}(q, T_v)$
6. return V
Cutting Trees

Given a query point \(q \), a cutting tree \(T \) on \(L \) can report a set of nodes \(V \) such that the set of lines \(X \) below \(q \) is the disjoint union of the sets \(L_v^- \), for \(v \in V \).

Lemma. \(X \) is reported as \(O(\log n) \) canonical subsets, and we can find them in \(O(\log n) \) time.
Cutting Trees

Given a query point \(q \), a cutting tree \(T \) on \(L \) can report a set of nodes \(V \) such that the set of lines \(X \) below \(q \) is the disjoint union of the sets \(L_v^{-} \), for \(v \in V \).

Lemma. \(X \) is reported as \(O(\log n) \) canonical subsets, and we can find them in \(O(\log n) \) time.

Proof. \(Q(n) = \) query time

\[
Q(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
O(r^2) + Q(n/r) & \text{otherwise}
\end{cases}
\]
Given a query point \(q \), a cutting tree \(T \) on \(L \) can report a set of nodes \(V \) such that the set of lines \(X \) below \(q \) is the disjoint union of the sets \(L_v^- \), for \(v \in V \).

Lemma. \(X \) is reported as \(O(\log n) \) canonical subsets, and we can find them in \(O(\log n) \) time.

Proof. \(Q(n) = \) query time

\[
Q(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
O(r^2) + Q(n/r) & \text{otherwise}
\end{cases}
\]

for any \(r > 1 \) this solves to \(O(\log n) \).
Given a query point q, a cutting tree T on L can report a set of nodes V such that the set of lines X below q is the disjoint union of the sets L_v^-, for $v \in V$.

Lemma. T uses $O(n^{2+\varepsilon})$ space.
Cutting Trees

Given a query point q, a cutting tree T on L can report a set of nodes V such that the set of lines X below q is the disjoint union of the sets L_v^-, for $v \in V$.

Lemma. T uses $O(n^{2+\epsilon})$ space

Proof. By Thm. we can construct a $(1/r)$-cutting of size at most cr^2, for some constant c.

Choose $r = \lceil (2c)^{1/\epsilon} \rceil$
Cutting Trees

Given a query point q, a cutting tree T on L can report a set of nodes V such that the set of lines X below q is the disjoint union of the sets L_v^-, for $v \in V$.

Lemma. T uses $O(n^{2+\varepsilon})$ space

Proof. By Thm. we can construct a $(1/r)$-cutting of size at most cr^2, for some constant c.

Choose $r = \lceil (2c)^{1/\varepsilon} \rceil$

$M(n) =$ space usage

$n_v =$ number of lines in C_v

$M(n) = \begin{cases} O(1) & \text{if } n = 1 \\ O(r^2) + \sum_{v \text{ child of the root}} M(n_v) & \text{other} \end{cases}$
Cutting Trees

Given a query point \(q \), a cutting tree \(T \) on \(L \) can report a set of nodes \(V \) such that the set of lines \(X \) below \(q \) is the disjoint union of the sets \(L_v^- \), for \(v \in V \).

Lemma. \(T \) uses \(O(n^{2+\varepsilon}) \) space

Proof. By Thm. we can construct a \((1/r)\)-cutting of size at most \(cr^2 \), for some constant \(c \).

Choose \(r = \lceil (2c)^{1/\varepsilon} \rceil \)

\[M(n) = \begin{cases} O(1) & \text{if } n = 1 \\ O(r^2) + \sum_{\text{child of the root}} M(n_v) & \text{other} \end{cases} \]

\(v \) has at most \(cr^2 \) children, each of size \(n_v \leq n/r \), so

\[M(n) \leq \begin{cases} O(1) & \text{if } n = 1 \\ O(r^2) + \sum_{i=1}^{cr^2} M(n/r) & \text{otherwise} \end{cases} \]
Cutting Trees

We wanted to count (report) all points in a triangle Q.
We wanted to count (report) all points in a triangle Q.

p lies below ℓ_1, and below ℓ_2, and above ℓ_3
Cutting Trees

We wanted to count (report) all points in a triangle Q.

Question. What does Q correspond to in the dual space?

Primal

report $p \iff$

p lies below ℓ_1, and below ℓ_2, and above ℓ_3
We wanted to count (report) all points in a triangle Q.

Question. What does Q correspond to in the dual space?
Cutting Trees

We wanted to count (report) all points in a triangle Q.

Question. What does Q correspond to in the dual space?

Let $L' \subseteq P^*$ of lines that lie above ℓ_1^*
Let $L'' \subseteq L'$ of lines that lie above ℓ_2^*
Let $L''' \subseteq L''$ of lines that lie below ℓ_3^*

$\text{report } p \iff p^* \in L'''$

p lies below ℓ_1, and below ℓ_2, and above ℓ_3

p^* lies above ℓ_1^*, and above ℓ_2^*, and below ℓ_3^*
Cutting Trees

We wanted to count (report) all points in a triangle Q.

Question. What does Q correspond to in the dual space?

Let $L' \subseteq P^*$ of lines that lie above ℓ_3^*
Let $L'' \subseteq L'$ of lines that lie above ℓ_2^*
Let $L''' \subseteq L''$ of lines that lie below ℓ_3^*

use a **multilevel** cutting tree.
Multilevel Cutting Trees

Count all lines from L that lie below q_1 and below q_2
Multilevel Cutting Trees

Count all lines from L that lie below q_1 and below q_2

For every node v of the main cutting tree T:

store L_v^- in a cutting tree T_{v}^{assoc}
Multilevel Cutting Trees

Count all lines from L that lie below q_1 and below q_2

For every node v of the main cutting tree T:
store L_v^- in a cutting tree T_v^{assoc}

Lemma. A two-level cutting tree uses $O(n^{2+\varepsilon})$ space, and can count all lines below query points q_1 and q_2 in $O(\log^2 n)$ time.
Multilevel Cutting Trees

Count all lines from L that lie below q_1 and below q_2

For every node v of the main cutting tree T:

store L_v^- in a cutting tree T_v^{assoc}

Lemma. A two-level cutting tree uses $O(n^{2+\varepsilon})$ space, and can count all lines below query points q_1 and q_2 in $O(\log^2 n)$ time.

$Q(n) = \begin{cases} O(1) & \text{if } n = 1 \\ O(r^2) + O(\log n) + Q(n/r) & \text{otherwise} \end{cases}$
Multilevel Cutting Trees

Count all lines from L that lie below q_1 and below q_2

For every node v of the main cutting tree T:

store L_v^- in a cutting tree T_v^{assoc}

Lemma. A two-level cutting tree uses $O(n^{2+\varepsilon})$ space, and can count all lines below query points q_1 and q_2 in $O(\log^2 n)$ time.

$Q(n) = \begin{cases} O(1) & \text{if } n = 1 \\ O(r^2) + O(\log n) + Q(n/r) & \text{otherwise} \end{cases}$

$M(n) = \begin{cases} O(1) & \text{if } n = 1 \\ \sum_{v \text{ child of the root}} (O(n^{2+\varepsilon}) + M) & \text{otherwise} \end{cases}$
Multilevel Cutting Trees

Count all lines from \(L \) that lie below \(q_1 \) and below \(q_2 \)

For every node \(v \) of the main cutting tree \(T \):

store \(L_v^- \) in a cutting tree \(T_v^{assoc} \)

Lemma. A two-level cutting tree uses \(O(n^{2+\varepsilon}) \) space, and can count all lines below query points \(q_1 \) and \(q_2 \) in \(O(\log^2 n) \) time.

\[
Q(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
O(r^2) + O(\log n) + Q(n/r) & \text{otherwise}
\end{cases}
\]

\[
M(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
O(r^2 n^{2+\varepsilon}) + \sum_{i=1}^{c} r^2 M(n/r) & \text{otherwise}
\end{cases}
\]

Count all lines from \(L \) that lie below \(q_1 \) and below \(q_2 \)
Count all lines from P^* that lie above ℓ_1^*, above ℓ_2^*, and below ℓ_3^*

\iff
Multilevel Cutting Trees

Count all lines from P^* that lie above ℓ_1^*, above ℓ_2^*, and below ℓ_3^*

\iff

Count all points from P that lie below ℓ_1, below ℓ_2, and above ℓ_3

\iff

Count all points from P that lie in a query triangle q (whose edges have supporting lines $\ell_1, \ell_2, \text{ and } \ell_3$)
Multilevel Cutting Trees

Count all lines from \(P^* \) that lie above \(\ell^*_1 \), above \(\ell^*_2 \), and below \(\ell^*_3 \)

\[\iff \]

Count all points from \(P \) that lie below \(\ell_1 \), below \(\ell_2 \), and above \(\ell_3 \)

\[\iff \]

Count all points from \(P \) that lie in a query triangle \(q \) (whose edges have supporting lines \(\ell_1, \ell_2, \) and \(\ell_3 \))

Thm. We can count all points in \(q \) using a 3-level cutting tree in \(O(\log^3 n) \) time. The data structure uses \(O(n^{2+\varepsilon}) \) space, and can be built in \(O(n^{2+\varepsilon}) \) time.
Multilevel Cutting Trees

Count all lines from \(P^* \) that lie above \(\ell_1^* \), above \(\ell_2^* \), and below \(\ell_3^* \)

\[\iff \]

Count all points from \(P \) that lie below \(\ell_1 \), below \(\ell_2 \), and above \(\ell_3 \)

\[\iff \]

Count all points from \(P \) that lie in a query triangle \(q \) (whose edges have supporting lines \(\ell_1, \ell_2, \) and \(\ell_3 \))

Thm. We can count all points in \(q \) using a 3-level cutting tree in \(O(\log^3 n) \) time. The data structure uses \(O(n^{2+\varepsilon}) \) space, and can be built in \(O(n^{2+\varepsilon}) \) time.

we can report those points in \(O(\log^3 n + k) \) time, where \(k \) is the output size.