Homework Exam 1 2018

Deadline: 21 December 2018, 11:00

This homework exam has 6 questions for a total of 100 points. You can earn an additional 10 points by a careful preparation of your hand-in: using a good layout, good spelling, good figures, no sloppy notation, no statements like “The algorithm runs in \(n \log n \)” (forgetting the \(O(\ldots) \) and forgetting to say that it concerns time), etc. Use lemmas, theorems, and figures where appropriate. Your final grade will be the number of points divided by 10 (with a maximum of a 10). Note that solving only a subset of the problems is sufficient to get a 10.

Question 1
Let \(S \) be a planar subdivision with \(n \) vertices, and let \(e \) be a half-edge of \(S \) that is incident to the outer face.

(a) (10 points)
Give pseudo-code for an algorithm that, given a pointer to \(e \), computes all vertices of \(S \) that have “hop-distance” at most one to the outer face. That is, vertices that incident to the outer face, or are adjacent to a vertex on the outer face. Your algorithm should use the ‘Twin’, ‘NextEdge’, ‘PrevEdge’, etc. fields to navigate (i.e. you cannot assume you can directly access a list of vertices). Describe in a few sentences the main idea of your algorithm and give its running time.

Hint: You can use the data fields of vertices, half-edges, and faces to store marks/flags.

(b) (10 points)
Suppose that you do not get a pointer to \(e \), but instead get a pointer to some arbitrary half-edge \(f \) of \(S \). Describe an approach to find a half-edge incident to the outer face, and give its running time. (You are not required to give the pseudo-code for this approach.)

Question 2 (10 points)
Let \(P \) be a polygon with \(n \) vertices and \(h \) holes. Prove that any triangulation of \(P \) consists \(n + 2h - 2 \) triangles.

Question 3
Let \(S \) be a set of \(n \) disjoint line segments in the plane, and let \(p \in \mathbb{R}^2 \) be a point that does not lie on any of the line segments. You may assume that the segments in \(S \) are open, and that the set that contains \(p \) and all endpoints from \(S \) contains exactly \(2n - 1 \) points and that no three such points are colinear.

(a) (10 points)
Develop an \(O(n \log n) \) time algorithm to compute the length of a longest (open) segment \(s \) that contains \(p \) but does not intersect any segment in \(S \). If segment \(s \) does not exist your algorithm should return \(\infty \). Prove that your algorithm is correct and achieves the stated running time.

(b) (5 points)
Is your algorithm still correct if the segments in \(S \) may intersect? If so, argue why, if not, give an example why not, and describe how to fix it. You do not have to argue about the running time of your algorithm in this scenario.

Question 4 (20 points)
Given a set \(R \) of \(n \) “red” points and a set \(B \) of \(n \) “blue” points in \(\mathbb{R}^2 \). Develop an algorithm that can test if there exists a line \(\ell \) that separates \(R \) from \(B \), that is, such that all points in \(R \) lie right of \(\ell \) and all points in \(B \) lie left of \(\ell \). Prove that your algorithm is correct and analyze its running time. You may assume that any line contains at most two points of \(R \cup B \) (i.e. there are no three colinear points).

Note: the number of points rewarded for this question will depend on the running time of your algorithm.
Question 5 (10 points)
Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \), and let \(R \) be the shortest (in terms of Euclidean length) closed curve such that all points of \(P \) lie inside (or on the boundary of) the area enclosed by \(R \). Prove that \(R \) is the convex hull \(\text{CH}(P) \) of \(P \).

Question 6
Let \(P \) be a set of \(n \) points in \(\mathbb{R}^2 \), let \(D(c) \) be a unit disk, that is, a disk of radius one and center \(c \), and let \(P_c = P \cap D(c) \) be the subset of \(P \) that lies in a unit disk centered at \(c \).

(a) (10 points)
Prove that there are at most \(O(n^2) \) different sets \(P_c \) over all points \(c \in \mathbb{R}^2 \).

(b) (10 points)
Give a construction that shows that the above bound is tight in the worst case. In other words, show that there can sometimes be \(\Omega(n^2) \) different sets \(P_c \).

(c) (5 points)
Let \(k \) be a natural number. Sketch an \(O(n^2 \log n) \) time algorithm that can compute the number of subsets of \(P \) of size \(k \) that can be covered exactly (i.e. the disk contains no additional points) by a unit disk. One or two paragraphs of description is sufficient; you do not have to prove correctness or give the full analysis.