Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.
Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.
Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or

2) intersect the boundary of R.

Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or
 find them using a range query with R on the set of end points

2) intersect the boundary of R.
Windowing Queries

Given a set S of n disjoint orthogonal line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or
 find them using a range query with R on the set of end points

2) intersect the boundary of R.
Windowing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v

stores the intervals $I(v)$ that contain v
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v stores the intervals $I(v)$ that contain v

The left subtree ℓ of v stores the intervals that lie completely left of v.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v
stores the intervals $I(v)$ that contain v

The left subtree ℓ of v stores the intervals that lie completely left of v.

The right subtree r of v stores the intervals that lie completely right of v.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v
stores the intervals $I(v)$ that contain v

store these intervals twice:
1) sorted on increasing left endpoint
2) sorted on decreasing right endpoint
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v stores the intervals $I(v)$ that contain v

$\text{QUERY}(q, T)$
if q left of v then
 report intervals from $I(v)$ using the list of left-end points, stop at the first interval right of q.
$\text{QUERY}(q, \ell)$
else if q right of v
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time:
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n)$

Query time:

Preprocessing time:
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n)$

Query time: $O(\log n + k)$

$k = \#\text{intervals reported}$

Preprocessing time:
Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query value q, we can find the intervals in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n)$
Query time: $O(\log n + k)$

$k = \#\text{intervals reported}$

Preprocessing time: $O(n \log n)$
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v
stores the intervals $I(v)$ that contain v
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v

stores the intervals $I(v)$ that contain v
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

T is a balanced BST on the endpoints

the root of the tree (the median endpoint) v stores the intervals $I(v)$ that contain v

store these intervals twice:

1) a range tree on their left endpoints
2) a range tree on the right endpoints
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

Space usage:

Query time:

Preprocessing time:
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n \log n)$

Query time:

Preprocessing time:
Segment Stabbing Queries

Given a set \(S \) of \(n \) disjoint horizontal line segments in the plane.

Store \(S \) in a data structure s.t. given a vertical query segment \(q \), we can find the segments in \(S \) intersecting \(q \) efficiently.

We store \(S \) in an interval tree \(T \)

Space usage: \(O(n \log n) \)

Query time: \(O(\log^2 n + k) \)

\(k = \#\text{intervals reported} \)

Preprocessing time:
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n \log n)$

Query time: $O(\log^2 n + k)$

$k = \#\text{intervals reported}$

Preprocessing time: $O(n \log n)$
Segment Stabbing Queries

Given a set S of n disjoint horizontal line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in an interval tree T

Space usage: $O(n)$

Query time: $O(\log^2 n + k)$

$k = \#\text{intervals reported}$

Preprocessing time: $O(n \log n)$
Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Our solution using an interval tree + priority search tree no longer works.
Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.
Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Storing all segments in all elementary intervals uses $\Theta(n^2)$ space.
Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Project the segments onto the x-axis, yielding intervals. We build a different data structure for interval stabbing.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.

Every node v corresponds to an interval I_v, which is the union of the elementary intervals stored in its subtree.
Interval Stabbing Queries

Given a set \(S \) of \(n \) intervals in \(\mathbb{R}^1 \)

Store \(S \) in a data structure s.t. given a query point \(q \), we can find the intervals in \(S \) intersecting \(q \) efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST \(T \).

Every node \(v \)
corresponds to an interval \(I_v \), which is the union of the elementary intervals stored in its subtree.

stores a canonical subset \(S(v) \subseteq S \) of intervals s.t. \(s \in S(v) \) if and only if \(I_v \subseteq s \) but \(\text{parent}(v) \cdot I \nsubseteq s \).
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.

Every node v

corresponds to an interval I_v, which is the union of the elementary intervals stored in its subtree.

stores a canonical subset $S(v) \subseteq S$ of intervals s.t. $s \in S(v)$ if and only if $I_v \subseteq s$ but $\text{parent}(v)_1 \not\subseteq s$
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Store the elementary intervals as leaves in a balanced BST T.

Every node v corresponds to an interval I_v, which is the union of the elementary intervals stored in its subtree.

stores a canonical subset $S(v) \subseteq S$ of intervals s.t. $s \in S(v)$ if and only if $I_v \subseteq s$ but $\text{parent}(v)_I \not\subseteq s$
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in $S(v)$.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Query: find all nodes v s.t. $q \in l_v$, and for each such node report all intervals in $S(v)$.

Query time: $O(\log n + k)$, where k is the output size.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

\implies space usage is $O(n \log n)$.

Given a set S of n intervals in R^1
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

\Rightarrow space usage is $O(n \log n)$.

Question: How do we build T?
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into elementary intervals in which a vertical line intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

\implies space usage is $O(n \log n)$.

Question: How do we build T?

Build a BST on the elementary intervals, insert the intervals in $s \in S$ one by one.
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Split the problem into *elementary intervals* in which a vertical line intersects the same segments.

Question: How much storage do we use?

Claim: Every interval is stored $O(\log n)$ times; at most twice per level.

\Rightarrow space usage is $O(n \log n)$.

Question: How do we build T?

Build a BST on the elementary intervals, insert the intervals in $s \in S$ one by one.

To insert s we visit at most 4 nodes per level
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

We store S in an segment tree T

Space usage: $O(n \log n)$

Query time: $O(\log n + k)$

$k = \#\text{intervals reported}$

Preprocessing time: $O(n \log n)$
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in $S(v)$.

Interval Stabbing Queries
Interval Stabbing Queries

Given a set S of n intervals in \mathbb{R}^1

Store S in a data structure s.t. given a query point q, we can find the intervals in S intersecting q efficiently.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in $S(v)$.

\implies we can store $S(v)$ any way we like, since we have to report all intervals in $S(v)$.
Segment Stabbing Queries

Given a set \(S \) of \(n \) horizontal line segments in the plane.

Store \(S \) in a data structure s.t. given a vertical query segment \(q \), we can find the segments in \(S \) intersecting \(q \) efficiently.

Query: find all nodes \(v \) s.t. \(q \in I_v \), and for each such node report all intervals in \(S(v) \).

\[\Rightarrow \text{we can store } S(v) \text{ any way we like, since we have to report all intervals in } S(v). \]

Store \(S(v) \) in a balanced BST.

\[\Rightarrow \text{We can report all segments intersected by } q \text{ in } O(\log^2 n + k) \text{ time}. \]
Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

Query: find all nodes v s.t. $q \in I_v$, and for each such node report all intervals in $S(v)$.

\implies we can store $S(v)$ any way we like, since we have to report all intervals in $S(v)$.

Store $S(v)$ in a balanced BST.

\implies

We can report all segments intersected by q in $O(\log^2 n + k)$ time.
Segment Stabbing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a vertical query segment q, we can find the segments in S intersecting q efficiently.

We store S in a segment tree T

Space usage: $O(n \log n)$

Query time: $O(\log^2 n + k)$

$k = \#\text{intervals reported}$

Preprocessing time: $O(n \log n)$
Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or
 find them using a range query with R on the set of end points
 $\implies O(\log^2 n + k)$ query, $O(n \log n)$ space.

2) intersect the boundary of R.
 find them using a segment tree
 $\implies O(\log^2 n + k)$ query, $O(n \log n)$ space.
Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or
 find them using a range query with R on the set of end points
 $\implies O(\log^2 n + k)$ query, $O(n \log n)$ space.
2) intersect the boundary of R.
 find them using a segment tree
 $\implies O(\log^2 n + k)$ query, $O(n \log n)$ space.

Thm. We can solve windowing queries in $O(\log^2 n + k)$ time, using $O(n \log n)$ space after $O(n \log n)$ preprocessing time.
Windowing Queries

Given a set S of n disjoint line segments in the plane.

Store S in a data structure s.t. given a query rectangle R, we can find the segments in S intersecting R efficiently.

The segments that intersect R

1) have an endpoint in R, or
 - find them using a range query with R on the set of end points
 $\Rightarrow O(\log n + k)$ query, $O(n \log n)$ space.
2) intersect the boundary of R.
 - find them using a segment tree
 $\Rightarrow O(\log n + k)$ query, $O(n \log n)$ space.

Thm. We can solve windowing queries in $O(\log n + k)$ time, using $O(n \log n)$ space after $O(n \log n)$ preprocessing time.