Computational Geometry

Lecture 6: Smallest enclosing circles and more
Facility location

Given a set of houses and farms in an isolated area. Can we place a helicopter ambulance post so that each house and farm can be reached within 15 minutes?

Where should we place an antenna so that a number of locations have maximum reception?
Facility location in geometric terms

Given a set of points in the plane. Is there any point that is within a certain distance of these points?

Where do we place a point that minimizes the maximum distance to a set of points?
Given a set of points in the plane, compute the smallest enclosing circle
Observation: It must pass through some points, or else it cannot be smallest

- Take any circle that encloses the points, and reduce its radius until it contains a point \(p \)
- Move center towards \(p \) while reducing the radius further, until the circle contains another point \(q \)
Smallest enclosing circle

- Move center on the bisector of p and q towards their midpoint, until:
 (i) the circle contains a third point, or
 (ii) the center reaches the midpoint of p and q
Question: Does the “algorithm” of the previous slide work?
Observe: A smallest enclosing circle has (at least) three points on its boundary, or only two in which case they are diametrally opposite.

Question: What is the extra property when there are three points on the boundary?
Construction by randomized incremental construction

incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points
Adding a point

Let p_1, \ldots, p_n be the points in random order

Let C_i be the smallest enclosing circle for p_1, \ldots, p_i

Suppose we know C_{i-1} and we want to add p_i

- If p_i is inside C_{i-1}, then $C_i = C_{i-1}$
- If p_i is outside C_{i-1}, then C_i will have p_i on its boundary
Adding a point

\[C_{i-1} \]

\[p_i \]

\[C_i \]
Question: Suppose we remembered not only C_{i-1}, but also the two or three points defining it. It looks like if p_i is outside C_{i-1}, the new circle C_i is defined by p_i and some points that defined C_{i-1}. Why is this false?
Adding a point
How do we find the smallest enclosing circle of p_1, \ldots, p_{i-1} with p_i on the boundary?

We study the *new(!)* geometric problem of computing the smallest enclosing circle with a given point p on its boundary.
Smallest enclosing circle with point

Given a set \(P \) of points and one special point \(p \), determine the smallest enclosing circle of \(P \) that must have \(p \) on the boundary

Question: How do we solve it?
Randomized incremental construction

Construction by **randomized incremental construction**

incremental construction: Add points one by one and maintain the solution so far

randomized: Use a random order to add the points
Adding a point

Let p_1, \ldots, p_{i-1} be the points in random order

Let C'_j be the smallest enclosing circle for p_1, \ldots, p_j ($j \leq i-1$) and with p on the boundary

Suppose we know C'_{j-1} and we want to add p_j

- If p_j is inside C'_{j-1}, then $C_j = C'_{j-1}$
- If p_j is outside C'_{j-1}, then C'_j will have p_j on its boundary (and also p of course!)
Adding a point

Adding a point p_j to the smallest enclosing circle C'_{j-1}.
How do we find the smallest enclosing circle of p_1, \ldots, p_{j-1} with p and p_j on the boundary?

We study the new(!) geometric problem of computing the smallest enclosing circle with two given points on its boundary.
Given a set P of points and two special points p and q, determine the smallest enclosing circle of P that must have p and q on the boundary.

Question: How do we solve it?
Two points known
Two points known

\[p \quad q \]
Assume w.l.o.g. that p and q lie on a vertical line. Let ℓ be the line through p and q and let ℓ' be their bisector.

For all points left of ℓ, find the one that, together with p and q, defines a circle whose center is leftmost $\rightarrow p_l$.

For all points right of ℓ, find the one that, together with p and q, defines a circle whose center is rightmost $\rightarrow p_r$.

Decide if $C(p,q,p_l)$ or $C(p,q,p_r)$ or $C(p,q)$ is the smallest enclosing circle.
Two points known

\[C(p, q, p_r) \]

\[C(p, q, p_l) \]
Analysis: two points known

Smallest enclosing circle for n points with two points already known takes $O(n)$ time, worst case
Algorithm: one point known

- Use a random order for \(p_1, \ldots, p_n \); start with \(C_1 = C(p, p_1) \)
- for \(j \leftarrow 2 \) to \(n \) do
 - If \(p_j \) in or on \(C_{j-1} \) then \(C_j = C_{j-1} \); otherwise, solve smallest enclosing circle for \(p_1, \ldots, p_{j-1} \) with two points known (\(p \) and \(p_j \))
Analysis: one point known

If only one point is known, we used randomized incremental construction, so we need an *expected time analysis*.
Analysis: one point known

Backwards analysis: Consider the situation *after* adding p_j, so we have computed C_j.
Analysis: one point known

The probability that the j-th addition was expensive is the same as the probability that the smallest enclosing circle changes (decreases in size) if we remove a random point from the j points.
Analysis: one point known

This probability is $2/j$ in the left situation and $1/j$ in the right situation.
Analysis: one point known

The expected time for the j-th addition of a point is

$$\frac{j-2}{j} \cdot \Theta(1) + \frac{2}{j} \cdot \Theta(j) = O(1)$$

or

$$\frac{j-1}{j} \cdot \Theta(1) + \frac{1}{j} \cdot \Theta(j) = O(1)$$

The expected running time of the algorithm for n points is:

$$\Theta(n) + \sum_{j=2}^{n} \Theta(1) = \Theta(n)$$
Analysis: one point known

Smallest enclosing circle for n points with one point already known takes $\Theta(n)$ time, expected
Algorithm: smallest enclosing circle

- Use a random order for p_1, \ldots, p_n; start with $C_2 = C(p_1, p_2)$
- for $i \leftarrow 3$ to n do
 If p_i in or on C_{i-1} then $C_i = C_{i-1}$; otherwise, solve smallest enclosing circle for p_1, \ldots, p_{i-1} with one point known (p_i)
Analysis: smallest enclosing circle

For smallest enclosing circle, we used randomized incremental construction, so we need an *expected time analysis*.
Backwards analysis: Consider the situation after adding p_i, so we have computed C_i.
The probability that the i-th addition was expensive is the same as the probability that the smallest enclosing circle changes (decreases in size) if we remove a random point from the i points.
This probability is $\frac{3}{i}$ in the left situation and $\frac{2}{i}$ in the right situation.
Analysis: smallest enclosing circle

The expected time for the i-th addition of a point is

$$\frac{i - 3}{i} \cdot \Theta(1) + \frac{3}{i} \cdot \Theta(i) = O(1)$$

or

$$\frac{i - 2}{i} \cdot \Theta(1) + \frac{2}{i} \cdot \Theta(i) = O(1)$$

The expected running time of the algorithm for n points is:

$$\Theta(n) + \sum_{i=3}^{n} \Theta(1) = \Theta(n)$$
Result: smallest enclosing circle

Theorem The smallest enclosing circle for n points in plane can be computed in $O(n)$ expected time
Randomized incremental construction algorithms of this sort (compute an ‘optimal’ thing) work if:

- The test whether the next input object violates the current optimum must be possible and fast
- If the next input object violates the current optimum, finding the new optimum must be an *easier* problem than the general problem
- The thing must already be defined by $O(1)$ of the input objects
- Ultimately: the analysis must work out
Width: Given a set of n points in the plane, compute the smallest distance between two parallel lines that contain the points (narrowest strip)
Width: Given a set of \(n \) points in the plane, compute the smallest distance between two parallel lines that contain the points (narrowest strip)

Theorem: The width of a set of \(n \) points can be computed in \(O(n \log n) \) time.
Property: The width is always determined by three points of the set

Idea: Maintain the two lines defining the width to have a fast test for violation.
Question: How about adding a point? If the new point lies inside the narrowest strip we are fine, but what if it lies outside?
Adding a point
Adding a point
A good reason to be very suspicious of randomized incremental construction as a working approach is *non-uniqueness* of a solution.
Question: Can we compute the minimum axis-parallel bounding box by randomized incremental construction?
Yes, in $O(n)$ expected time

... but a normal incremental algorithm does it in $O(n)$ worst case time
Problem 1: Given n disks in the plane, can we compute the lowest point in their common intersection efficiently by randomized incremental construction?

Problem 2: Given n disks in the plane, can we compute the lowest point in their union efficiently by randomized incremental construction?
Problem: Given a set of n red and blue points in the plane, can we decide efficiently if they have a separating line?
One-guardable polygons

Problem: Given a simple polygon with n vertices, can we decide efficiently if one guard is enough?
One-guardable polygons

It can easily happen that a problem is an instance of linear programming.

Then don’t devise a new algorithm, just explain how to transform it, and show that it is correct (that your problem is really solved that way).