Exercises - Algorithmics - Algorithms
SOLUTIONS

Question 1
Give pseudocode for an algorithm to find the largest element in an array. How efficient is your algorithm?

Solution
Data: A: an array of numbers

\[x = -\infty; \]
\[i = 1; \]

while A has at least i elements do

 if $A[i] > x$ then

 $x = A[i]$;

 end

 $i = i + 1$;

end

return x;

This algorithm loops over the array once, which takes $O(|A|)$ time.

Question 2
Give pseudocode for an algorithm to check if a graph has any triangles (cycles of length 3). How efficient is your algorithm?

Solution
Data: $G = (V, E)$: a graph

\[b = false; \]

for u in V do

 for v in V do

 for w in V do

 if $(u, v) \in E \land (v, w) \in E \land (u, w) \in E$ then

 $b = true$;

 end

 end

 end

end

return b;

This algorithm checks all triples of vertices, which is not particularly efficient. Assuming we stored the graph in an adjacency matrix, it runs in $O(|V|^3)$ time.

Question 3
Give pseudocode for an algorithm to check if a graph is connected. How efficient is your algorithm?

Solution
Data: $G = (V, E)$: a graph
pick any $v \in V$;
marked(v) = true;
$R = \{v\}$;
while R is not empty do
 pick any $v \in R$;
 for $e \in E$ connected to v do
 $w =$ the other vertex of e;
 if not marked(w) then
 marked(w) = true;
 $R = R \cup \{w\}$;
 end
 end
end
$b =$ true for $v \in V$ do
 if not marked(w) then
 $b =$ false;
 end
end
return b;

This algorithm visits every edge of the graph at most once, so it takes $O(|E|)$ time, provided that we can efficiently access the neighbours of each vertex (that is, if the graph is stored as an adjacency list rather than an adjacency matrix).