Genetic Algorithms for Map Labeling

Steven van Dijk

10th December 2001
Outline of talk

- What is the map-labeling problem?
- What are genetic algorithms (GAs)?
- A GA for the basic map-labeling problem.
- Does the algorithm scale well?
- Application of techniques to other problems.
- A GA for labeling a map with cities and rivers.
- Conclusion.
What is the map-labeling problem?

- A map contains point-, line- and area features. The depiction of the feature name on the map is called its label.

- The map-labeling problem: place the labels of the features on the map.
What is the map-labeling problem?

Why is this a difficult problem?

1. Even basic instances are NP-hard. (Exhaustive search has exponential scale-up.)

2. There exist numerous cartographic rules which need to be considered.
What is the map-labeling problem?

The *basic* map-labeling problem: given is a set of points in the plane. Each point has a rectangular label of fixed dimensions which can be placed in one of four positions. Find a *labeling* which assigns a position to the label of each point such that the number of free labels is maximized.
What are genetic algorithms (GAs)?

Genetic algorithms are heuristic solvers for combinatorial problems, based on the theory of Darwinian evolution.

Outline of algorithm:

1. initialize population of solutions
2. repeat
3. select parents from population
4. with probability Pr_c perform crossover and generate children
5. with probability Pr_m perform mutation on children
6. replace members of population with children
7. until termination criterion satisfied
8. return best individual
What are genetic algorithms (GAs)?

Why do GAs work?

- Schema theorem: partial solutions which contribute much to the fitness and are unlikely to be disrupted will propagate through the population. (Result of selection.)

- Building block hypothesis: (close-to) optimal solutions are assembled from partial solutions by the GA. (Result of crossover.)

Disruptive crossover:

Perfect crossover:

Shaded parts are building blocks.
What are genetic algorithms (GAs)?

Key concepts:

- Linkage: what is are the building blocks and how can they be preserved from disruption?

- Mixing: assure that parts are exchanged quickly enough to allow assembly.

Disruptive crossover:

Perfect crossover:
A GA for the basic map-labeling problem.

Encoding:

Initialization: assign a random position to each label.

Selection: elitist recombination (see below).

Crossover: rival crossover (see later).

Mutation: no traditional mutation.

Best two of family replace parents.
A GA for the basic map-labeling problem.

Crossover is done by repeatedly choosing rival groups. Two points are *rivals* if their labels can overlap. A point together with its rivals is called a *rival group*.

Crossover is *complementary*: half of a parent is copied to a child and the other half is copied from the other parent.
A GA for the basic map-labeling problem.

After crossover the geometrically local optimizer is applied to points which may have a conflict.

The geometrically local optimizer for the map-labeling problem is slot filling:
A GA for the basic map-labeling problem.

Results: comparison against best algorithm at the time (based on simulated annealing).
Does the algorithm scale well?

Design of GA allows an analysis of its *scale-up behavior*: what happens to run time when input is doubled?

\[RT = e_{fit} \cdot n^* \cdot t^*, \]

where

\(RT \) = run time,

\(e_{fit} \) = time needed for a single fitness evaluation,

\(n^* \) = *critical* population size, and

\(t^* \) = number of generations when \(n = n^* \).

Every term is dependent on \(l \), the input size (number of cities).
Does the algorithm scale well?

How do the terms of the formula scale?

- \(e_{fit} = O(l) \), since each city can be checked in constant time.

- \(n^* \): If the gambler’s-ruin model can be applied, prediction is \(O(\sqrt{l}) \).

- \(t^* \): If convergence models can be applied, prediction is \(O(\sqrt{l}) \).

Therefore, run time is quadratic: \(RT = O(l^2) \).

Double input \(\Rightarrow \) four times the computation time. Compare with exponential scale-up of exhaustive search.

Question: can the models be applied?
Does the algorithm scale well?

Question: can the models be applied?

Short answer: YES.
Does the algorithm scale well?

Assumptions of models can be satisfied because:

- Fitness function can be kept simple (uniformly scaled, semi-separable, and additively decomposable).

- Crossover is linkage-respecting and mixes well.

- Disruption is minimized by the geometrically local optimizer.

Bottom line: theoretical insights can be used to design efficient genetic algorithms for real-world problems.