
Department of Information and Computing Sciences
Utrecht University

INFOB3TC – Assignment P2

Andres Löh, João Pizani

Deadline: Friday, 18 December 2020 23:59

The goal of this assignment is to implement a little domain-specific programming
language. Programs comprise instructions for a little spaceship called Arrow that flies
around in bounded two-dimensional space. The space is not empty, but inhabited with
various flying objects such as asteroids, lambdas and debris. By interpreting programs,
we can let Arrow fly through space and perform certain tasks such as finding a way
through an asteroid field and cleaning up debris.

Credits

This assignment is inspired by the Kara programming system:

http://www.swisseduc.ch/compscience/karatojava/kara/

and in particular by Frank Huch’s paper “Learning Programming with Erlang” that
appeared in the proceedings of the 2007 ACP SIGPLAN workshop on Erlang.

Alex and Happy

For this task, you are supposed to use the Alex lexer generator and the Happy parser
generator. These are available from

http://haskell.org/alex/

http://haskell.org/happy/

but they are also part of the Haskell Platform, so if you have that installed, you already
have both Alex and Happy.

General remarks

• Make sure your program compiles. The starting framework is set up as a new-
style Cabal package, so invoking cabal v2-build (on new versions cabal build)
should succeed. Using a different build tool is allowed, as long as you adhere to the
structure and clearly indicate which dependencies, if any, are needed to compile
your submission.

1

http://www.swisseduc.ch/compscience/karatojava/kara/
http://haskell.org/alex/
http://haskell.org/happy/

• The starting framework includes a readme file, guiding you through the structure.

• Include useful comments in your code. Do not paraphrase the code, but describe
the structure of your program, special cases, preconditions etc.

• Try to write readable and idiomatic Haskell. Style influences the grade! The use
of existing higher-order functions such as map, foldr , filter , zip – just to name a
few – is explicitly encouraged. The use of all existing libraries is allowed (as long
as the program still compiles with the above invocation).

• Copying solutions from the internet is not allowed.

• You may work alone or with one other person. A team must submit a single
assignment and put both names on it. You do not need to work in the same teams
as for previous assignments.

The Arrow programming language

The concrete syntax of the Arrow language is given by the following grammar with start
symbol Program:

Program → Rule∗

Rule → Ident -> Cmds .

Cmds → ε | Cmd (, Cmd)∗

Cmd → go | take | mark | nothing
| turn Dir
| case Dir of Alts end

| Ident
Dir → left | right | front
Alts → ε |Alt (; Alt)∗

Alt → Pat -> Cmds
Pat → Empty | Lambda | Debris | Asteroid | Boundary | _

A program is a sequence of rules. Think of rules as procedures. A name is bound to a
sequence of commands. Rules are terminated by a period.

Commands are separated by commas. There is a fixed number of commands. These
are instructions for Arrow. Informally, go means “move in the current direction if possi-
ble”, take means “pick up whatever is here”, mark means “leave a lambda in the current
spot”, nothing means “do nothing”, turn takes a direction and causes Arrow to turn
left or right. The case command takes a direction and performs a sensor reading in
that direction. Depending on what is sensed, different actions may be taken. Finally,
another rule can be invoked by naming it.

In a case construct, multiple alternatives can be provided (separated by semicolons)
that map patterns to rules. Patterns correspond to the things that can be located in a
certain position, and there is a catch-all pattern called _.

Note that unlike in Haskell, case expressions are terminated by an end keyword.

2

The lexical syntax of a program is described as follows: the program text consists of
a (possibly space-separated) sequence of tokens.

Token → -> | . | , | go | take | mark | nothing | turn | case | of | end
| left | right | front | ;
| Empty | Lambda | Debris | Asteroid | Boundary | _
| Ident

Ident → (Letter |Digit | + | -)+

A token is either symbolic, a command keyword, a pattern keyword, or an identifier. It
is implicitly understood that an Ident must not be any of the keyword tokens and must
not be directly followed by another character that could occur in an identifier.

Furthermore, comments may occur in programs between tokens. These are introduced
by -- and extend to the end of the line.

1 (1 pt). Write a lexer/scanner for the language using Alex. Define a datatype to
represent tokens and let the scanner return such tokens. Study the online documentation
of Alex to find out what the syntax of Alex specification files is. Start in Chapter 2,
the introduction should already contain most of what you need. The use of the basic

wrapper is sufficient for this task. If you want to use one of the more advanced wrappers,
that is also fine, but not required. In particular, terminating with an exception on a
lexing error is allowed in this case.

Write the datatype in Model.hs, and the lexer in Lexer.x.

2 (0.75 pt). Define a suitable abstract syntax for the Arrow language in Model.hs. Call
the type corresponding to a whole program Program.

3 (1 pt). Write a parser for the language using Happy, in Parser.y. Again, study the
online documentation to find out about the syntax of Happy specification files. Again,
Chapter 2 is a good start and should contain most of the required information. Use the
datatype of tokens delivered by the lexer as input, and produce values of the abstract
syntax as results of the parser. It is not required to use any of the advanced error-
handling functionality of Happy, nested lexing, or monadic parsing functionality. Again,
failing with an exception on a parse error is allowed.

4 (0.5 pt). What can you find out from the Happy documentation over Happy’s handling
of left-recursive and right-recursive grammars. How does this compare to the situation
when using parser combinators? Include your answer in open-questions.md.

5 (1 pt). Define an algebra type and a fold function for your abstract syntax type, in
Algebra.hs.

6 (1.5 pt, difficult). Define one or more algebras that describe an analysis of the program
that (next to possibly required additional information) performs the following sanity
checks on a given program:

• There are no calls to undefined rules (rules may be used before they are defined
though).

3

• There is a rule named start.

• No rule is defined twice.

• There is no possibility for pattern match failure, i.e., all case expressions must
either contain a catch-all pattern _ or contain cases for all five other options.

Use the algebra and fold functions to define a function

check :: Program → Bool

that combines all of the above checks and returns true iff a program is sane.

An interpreter for Arrow programs

Arrow lives on a rectangular board that we call “space” and represent using a finite map
(from module Data.Map):

type Space = Map Pos Contents
type Size = Int
type Pos = (Int , Int)
data Contents = Empty | Lambda |Debris |Asteroid | Boundary

We assume that there always is a rectangular area of positions with non-negative row-
and column-coordinates contained in the finite map, including position (0, 0). We leave
the size of the space open though, and functions can use findMax to find the maximum
key and hence the maximum position in a given space.

We define an input format for spaces where contents are represented by characters:

contents character

empty .

lambda \

debris %

asteroid O

boundary #

4

We specify the format by example:

(7,7)

........

....%...

..%%%%..

....%%%.

...%%%..

....%.%%

....%%%%

........

The first line contains the maximum valid row-column-coordinate for the board. Here,
we thus have a space with 8 rows and 8 columns. The rows are then specified line by
line, starting with row 0 end ending with row 7. The example space contains a field of
debris, but otherwise just empty space.

A parser for the input format is included in the starting framework:

parseSpace :: Parser Char Space
parseSpace =
do

(mr ,mc)← parenthesised
((,)<$> natural <∗ symbol ’,’<∗> natural)<∗ spaces

— read mr + 1 rows of mc + 1 characters
css ← replicateM (mr + 1) (replicateM (mc + 1) contents)
— convert from a list of lists to a finite map representation
return $ L.fromList $ concat $

zipWith (λr cs →
zipWith (λc d → ((r , c), d)) [0 . .] cs) [0 . .] css

We still need the parser contents that parses a single character and maps it to the
appropriate constructor of type Contents:

contents :: Parser Char Contents
contents =

choice (Prelude.map (λ(f , c)→ f <$ symbol c) contentsTable)<∗ spaces

contentsTable :: [(Contents,Char)]
contentsTable =

[(Empty , ’.’), (Lambda, ’\\’), (Debris, ’%’), (Asteroid , ’O’), (Boundary , ’#’)]

7 (0.5 pt). Write a printer for Space that produces the output format just shown, in
Interpreter.hs.

8 (0.25 pt). Assuming that Ident is the Haskell type representing an identifier, and
Commands represents a sequence of commands, we represent a program as an environ-
ment during execution:

5

type Environment = Map Ident Commands

Write a function

toEnvironment :: String → Environment

in Interpreter.hs that first lexes and then parses a string, checks the resulting Program
using check , and, assuming the check succeeds, translates the Program into an environ-
ment.

9 (1.5 pt, medium). During the execution of a program, we have to maintain state.
The state contains the current space, the position of Arrow, its heading, and a stack of
commands.

type Stack = Commands
data ArrowState = ArrowState Space Pos Heading Stack

Implement a function in Interpreter.hs that performs a single execution step:

step :: Environment → ArrowState → Step

where Step encodes the possible results of one execution step:

data Step = Done Space Pos Heading
| Ok ArrowState
| Fail String

The function implements the following semantics. The top item on the command stack
is analyzed:

• On go, Arrow moves forward one step using its current heading, as long as the
target field is empty or contains a lambda or debris. Otherwise, it stays where it
is.

• On take, Arrow picks up lambda or debris, leaving an empty space at its current
position.

• On mark, Arrow places a lambda at its current position regardless of what was
there before (debris is removed).

• On nothing, nothing changes.

• On turn, Arrow changes its heading by 90 degrees to the left or right as indicated.
Turning forward is possible, but has no effect.

• On a case, Arrow makes a sensor reading. Depending on the direction specified
as an argument to case, Arrow will take a look at the position that – according to
its current heading – is to the front, left, or right. The pattern of each alternative
is then analyzed in turn until one matching alternative is found. The instructions

6

on the right hand side are then prepended to the command stack and execution
continues. If no alternative matches, execution fails. An alternative matches if the
pattern corresponds to the contents. Positions that are not stored in the finite map
are implicitly assumed to contain Boundary. A catch-all pattern matches always.

• On a rule call, the code stored with that rule in the environment is prepended to
the command stack. If the rule is not defined, execution fails.

• If the command stack is empty, a Done result is produced.

10 (0.75 pt). Rules can be recursive. Note how recursion affects the size of the command
stack during execution. Does it matter whether the recursive call is in the middle
of a command sequence or at the very end of the command sequence? Include your
observations in open-questions.md.

11 (1.25 pt). Write two drivers in Driver.hs

interactive :: Environment → ArrowState → IO ()
batch :: Environment → ArrowState → (Space,Pos,Heading)

that – given an environment and an initial state – run the program.
The interactive driver should print in every step at least the board and ask for some

form of user confirmation. After getting the user input, the driver should invoke the
next step and continue from the beginning. This driver should recognize abnormal and
successful terminations of the reduction and treat them sensibly. The batch driver should
run the program and return the final state, in which there are no more steps to take.

Write proper main programs that lets you read in a space and a program from a file,
specify a start position and heading, and runs the program in either mode.

7

Example: Remove debris

The following example program removes all debris in a connected component of the
space. So, for instance, running this program on the example space shown above with
the ship starting in any position filled with debris should ultimately clear all the debris
in the space, then stop.

start -> take,

case front of

Debris -> go, start, turn right, turn right,

go, turn right, turn right;

_ -> nothing

end,

turn right,

s2.

s2 -> take,

case front of

Debris -> go, start, turn right, turn right,

go, turn right, turn right;

_ -> nothing

end,

turn right,

s3.

s3 -> take,

case front of

Debris -> go, start, turn right, turn right,

go, turn right, turn right;

_ -> nothing

end,

turn right,

s4.

s4 -> take,

case front of

Debris -> go, start, turn right, turn right,

go, turn right, turn right;

_ -> nothing

end,

turn right.

8

Example: Adding natural numbers

Here is another example program that adds two natural numbers:

start -> turn right, go, turn left, firstArg.

turnAround -> turn right, turn right.

return -> case front of

Boundary -> nothing;

_ -> go, return

end.

firstArg -> case left of

Lambda -> go, firstArg, mark, go;

_ -> turnAround, return, turn left,

go, go, turn left,

secondArg

end.

secondArg -> case left of

Lambda -> go, secondArg, mark, go;

_ -> turnAround, return, turn left,

go, turn left

end.

The program expects its input as rows of lambdas, as in the following example:

(4,14)

\\\\\..........

...............

\\\\\\\........

...............

...............

The first number here is 5, the second 7.
If you start arrow facing east in the upper left corner of the space (i.e., at position

(0, 0)), then the result of adding the two numbers is written below the two inputs:

(4,14)

\\\\\..........

...............

\\\\\\\........

...............

\\\\\\\\\\\\...

9

