Monte Carlo methods

First: hit-or-miss Monte Carlo, determine π

- Throw random darts on a square board with a circle in it
- Count #hits in the square and in the circle
- $\# \text{hits in circle} / \# \text{hits in square} = \pi / 4$

Computer approach:

```c
for (i=0; i<N; i++) {
    x=random();
    y=random();
    if (x^2+y^2<1) hits_c++;
}
printf("Pi=%lf\n", hits_c*4.0/N);
```
Second: Monte Carlo integration to determine π

Function $f(x) = \sqrt{1-x^2}$, $-1 \leq x \leq 1$

Integral of $f(x)$ equals $\pi/2$

- Take random numbers $r_1 \ldots r_N$
- Average of r_i equals $\pi/4$

Computer approach:

```c
for (i=0; i<N; i++) {
    x=random();
    sum+=sqrt(1-x^2);
}
printf("Pi=%.1f\n", sum*4.0/N);
```
Both of these require uniform random numbers.

How do we generate pseudo-random numbers?

a common algorithm: linear congruential RNG

\[i_n = (a \cdot i_{n-1} + c) \mod m \]

One possible choice:

\[a = 2416, \ c = 374441 \text{ and } m = 1771875 \]

If you do multiple runs and want improved statistics, use different seeds (here \(i_0 \) is the seed). One possibility:

\[i_0 = \text{number of seconds since Jan 1}^{\text{st}}, 1970 \]

(subroutine time() in <times.h>)

Provided you do not restart within a second.

Note: do not reseed the RNG during a run!
Sequence repeats itself after m calls (or fewer)

How random are RNGs?

Charmaine Kenny (2005) recommended the following tests from the NIST suite for use on RANDOM.ORG:

- Frequency Test: Monobit
- Frequency Test: Block
- Runs Test
- Test for the Longest Runs of Ones in a Block
- Binary Matrix Rank Test
- Discrete Fourier Transform (Spectral Test)
- Non-Overlapping Template Matching Test
- Overlapping Template Matching Test
- Maurer's Universal Statistical Test
- Linear Complexity Test
- Serial Test
- Approximate Entropy Test
- Cumulative Sums Test
- Random Excursions Test
- Random Excursions Variant Test
Visualisation often helps as well, for instance

[Bo Allen, with rand() from PHP in Microsoft Windows]
- Your task: perform tests on your RNG, and present results with proper statistical analysis in the SOM.
- Lectures of Deb Panja will prepare you for this.
- Your grade depends on this!

Possible projects:

Compare performance of MC integration with other integration methods, on a variety of d-dim. integrals:

- Speed of convergence in d dimensions
- Ways to boost MC integration, for instance automated “importance sampling”? (key words VEGAS, MISION, recursive stratified sampling,)
Importance sampling

Some mathematics:

\[\frac{\partial G(x)}{\partial x} = g(x) \]
\[\implies \int f(x) \, dx = \int \frac{f(x)}{g(x)} \, dG(x) \]

In practice, this means that if there is an invertible function \(g(x) \) such that \(f(x) \sim g(x) \), one can compute the integral over \(f(x) \) more accurately using:

- Sample points \(x \) from (normalized) distribution \(g(x) \)
- Determine the average \(<f(x)/g(x)> \)

Note 1: if \(g(x) \) is almost identical to \(f(x) \), then the spread in \(f(x)/g(x) \) is small, hence the statistical error.

Note 2: this allows integration over infinite domains

Warning: integration of functions with a singularity can give complications