The Stable Marriage Problem

Algorithms and Networks
The stable marriage problem

- Story: there are n men and n women, which are unmarried. Each has a preference list on the persons of the opposite sex.

- Does there exist and can we find a stable matching (stable marriage): a matching of men and women, such that there is no pair of a man and a woman who both prefer each other above their partner in the matching?
Application

- Origin: assignment of medical students to hospitals (for internships)
 - Students list hospitals in order of preference
 - Hospitals list students in order of preference
Example

- Arie: Betty Ann Cindy
- Bert: Ann Cindy Betty
- Carl: Ann Cindy Betty
- Ann: Bert Arie Carl
- Betty: Arie Carl Bert
- Cindy: Bert Arie Carl

- Stable matching: (Arie, Betty), (Bert, Ann), (Carl, Cindy)
- Matching (Arie, Ann), (Bert, Betty), (Carl, Cindy) is not stable, e.g., Arie and Betty prefer each other above given partner
- **Blocking pair**
Remark

- “Local search” approach does not need to terminate

SOAP-SERIES-ALGORITHM

While there is a blocking pair

Do Switch the blocking pair

- Can go on for ever!
- So, we need something else…
Result

- **Gale/Stanley algorithm**: finds always a stable matching
 - Input: list of men, women, and their preference list
 - Output: stable matching
The algorithm

• Fix some ordering on the men
• Repeat until everyone is matched
 – Let X be the first unmatched man in the ordering
 – Find woman Y such that Y is the most desirable woman in X’s list such that Y is unmatched, or Y is currently matched to a Z and X is more preferable to Y than Z.
 – Match X and Y; possible this turns Z to be unmatched

Questions:
Does this terminate? How fast?
Does this give a stable matching?
Termination and number of steps

- Once a woman is matched, she stays matched (her partner can change).
- When the partner of a woman changes, this is to a more preferable partner for her: at most $n - 1$ times.
- Every step, either an unmatched woman becomes matched, or a matched woman changes partner: at most n^2 steps.
Stability of final matching

- Suppose final matching is not stable.

- Take:
 - M_x is matched to W_x,
 - M_y is matched to W_y,
 - M_x prefers W_y to W_x,
 - W_y prefers M_x to M_y.

- When W_y is before W_x in the preference list of M_x, but M_x is not matched to W_y. Two cases:
 - When M_x considers W_y, she has a partner M_z preferable to M_x: M_z is also preferable to M_y, but in the algorithm woman can get only more preferable partners, contradiction.
 - When M_x considers W_y, she is free, but M_x is later replaced by someone preferable to M_x. Again, W_y can never end up with M_y.

Comments

• A stable matching exists and can be found in polynomial time

• Consider the greedy algorithm:
 – Start with any matching, and make switches when a pair prefers each other to their current partner
 – This algorithm does not need to terminate

• Controversy: the algorithm is better for the men: hospitals in the application
Man optimal stable matchings

- All possible executions of the Gale-Shapley algorithm give the same stable matching.
- In this matching, the men have the best partner they can have in any stable matching.
- In this matching, the women have the worst partner they can have in any stable matching.
Proof

- Suppose the algorithm gives matching M.
- Suppose there is a stable matching M' with man m matched to w' in M', and to w in M, with m preferring w' over w.
- Look at run of algorithm that produces M. w' has rejected m at some point.
- Of all such m, w and w', take a triple such that the rejection of m by w' happens first.
- Suppose w' prefers m' to m, as reason for the rejection.
- m' must prefer w' to his partner in M': see next slide
- Thus m', w' is a blocking pair in M': M' not stable; contradiction.
- So, all men are matched to the woman that appears in a stable matching that they prefer most.
 - Unique solution
m' Prefers w'

- m' is matched in M' with w''
- If m' prefers w'' to w':
 - In execution of algorithm, we have
 - At some point w'' must reject m' as later m' is matched with w' (while w' rejects m at that step).
 - This is earlier than the rejection of w' of m
 - Now m', w' and w'' form an earlier choice for the triple.
Stable roommates

- Variant of problem with boys that must share two-person rooms (US campus)
- Each has preference list
- Stable marriage problem is special case
Not always a stable matching for the stable roommates

• Consider the following instance:
 – Person Arie: Carl Bert Dirk
 – Person Bert: Arie Carl Dirk
 – Person Carl: Bert Arie Dirk
 – Person Dirk: no difference

• Each matching is unstable e.g., (Arie,Bert) (Carl,Dirk) has \{Carl,Arie\} as blocking pair
Testing stable roommates

- Complicated algorithm
- Uses $O(n^2)$ time
Comments

• Much further work has been done, e.g.:
 – Random / Fair stable matchings
 – Many variants of stable matching are also solvable (indifferences, groups, forbidden pairs, …)
 – What happens if some participants lie about their preferences?
 – Stable roommates with indifferences: NP-complete