Minimum Cost Flow

Algorithms and Networks
This lecture

- The minimum cost flow problem: statement and applications
- The cycle cancelling algorithm
- A polynomial time variant of cycle cancelling
- The successive shortest paths algorithm
Minimum Cost Flow I

• Edges have
 – **Capacity** $c(u,v)$: bound on amount of flow that can go through the edge
 – **Cost**: $\text{cost}(u,v)$: cost that must be paid per unit of flow that goes through the edge.

• Cost of flow f:
 – Sum over all (u,v) of: $f(u,v) \times \text{cost}(u,v)$.
Minimum cost flow problem

- **Given**: Network G, c, cost, s, t, and a target flow value r.
- **Question**: Find a flow from s to t with value r, with minimum cost.
Unbounded capacities

- Some edges may have unbounded capacities
 - If there is a cycle of negative cost with only edges with unbounded capacity:
 - Arbitrary small cost (degenerate case)
 - Otherwise: simple transformation to bounded capacities
 - E.g., set each unbounded capacity to sum of all bounded capacities
Separate demands

- Similar to max-flow with multiple sources and multiple sinks
- Or: work with “demand”, which can be positive or negative
Nonnegative arc costs

• We may assume all costs are nonnegative.
• In case of negative costs: assume bounded capacity. Modify network to equivalent one with nonnegative costs:

Or work with separate demands
Applications

- Transport problems
- Minimum cost matchings
- Reconstruction of Left Ventricle from X-ray projections
 - Image: 2d bit array; known are sums of columns, rows; probabilities for each bit
 - Look for image with correct row and column sums of maximum probability
 - Can be modelled as minimum cost flow problem
Application: Optimal loading of hopping airplane

\(b_{ij} \) weight units (or passengers) can be transported from \(i \) to \(j \)
Each gives a profit of \(f_{ij} \)
Plane can never carry more than \(p \) units
How much units do we transport of each type for maximum profit?

Capacity \(i \rightarrow j: p \)
Node \(ij \) has supply \(b_{ij} \)
Cost from \(ij \) to \(i \): \(-f_{ij}\)
Node \(i \) has demand
sum over all \(b_{ji} \)

All other arcs infinite cap.
All other costs 0
Residual network

- Capacities as for maximum flow algorithms.
- If \(f(u,v) > 0 \), then \(\text{cost}_f(u,v) = \text{cost}(u,v) \), and \(\text{cost}_f(v,u) = -\text{cost}(u,v) \).
Example

Suppose we send 1 flow from a to b

In G_f:

Capacity 5, cost 3
Capacity 2, cost 6
Capacity 4, cost 3
Capacity 2, cost 6
Capacity 1, cost -3

Universiteit Utrecht

Algorithms and Networks: Minimum Cost Flow
Cycle cancelling algorithm

- Make a feasible flow f in the network
- while G_f has a negative cycle do
 - Find a negative cycle C in G_f
 - Let D be the minimum residual capacity c_f of an edge on C
 - Add D units of flow to each edge on C: this is a new feasible flow of smaller cost
- Output f.
Cycle cancelling algorithm is correct

- **Theorem**: a flow \(f \) has minimum costs, if and only if \(G_f \) has no negative cycle.
 - If \(G \) has negative cycle, then we can improve \(f \) to one with smaller cost.
 - Suppose \(f \) is a flow, and \(f' \) is an optimal flow. \(f' - f \) is a circulation in \(G_f \), hence a linear combination of cycles, and if \(f \) is not optimal, then the total cost of these cycles is negative, so there is a negative cycle in this set: it is a cycle in \(G_f \).
More on the cycle cancelling algorithm

• No guarantee that it uses polynomial time.

• Corollary: if all costs, capacities, and target flow value are integral, then there is an optimal integer minimum cost flow.
 – The cycle cancelling algorithm finds an integer flow in this case.

• Variant: using always the minimum mean cost cycle gives a polynomial time algorithm!
Minimum mean-cost circulation algorithm

- Cycle cancelling algorithm but find always the minimum mean cost cycle and use that.
 - $O(nm)$ time to find the cycle.
 - A theorem shows that $O(nm^2 \log^2 n)$ iterations are sufficient.
 - $O(n^2m^3 \log^2 n)$ algorithm.
Successive shortest paths

- Start with flow \(f \) with \(f(u,v) = 0 \) for all \(u,v \).
- **repeat until** value\((f) = r \)
 - Find the shortest path \(P \) in \(G_f \) from \(s \) to \(t \)
 - Let \(q \) be the minimum residual capacity of an edge on \(P \).
 - Send \(\min(q,r - \text{value}(f)) \) additional units of flow across \(P \).
On the successive shortest paths algorithm

- May use exponential running time
- Assume G has no negative edge costs.
- Gives optimal answer.
 - Invariant: f has minimum cost among all flows with value $\text{value}(f)$.

Suppose we obtain f'' from f by sending across P.

Let f''' be a minimum cost flow with same value as f''.

Write $f''' - f$ as weighted sum of paths from s to t in G_f and circuits in G_f.

Argue that $\text{cost}(f'' - f) \leq \text{cost}(f''' - f)$, using that:
- P is shortest path
- Circuits have non-negative costs, by optimality of f.

Algorithms and Networks: Minimum Cost Flow
Finally

• More efficient algorithms exist
 – Some use scaling techniques:
 • Scaling on capacities
 • Scaling on costs