Graph Isomorphism

Let \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) be graphs.

An isomorphism of \(G_1 \) to \(G_2 \) is a bijection \(\phi : V_1 \rightarrow V_2 \) s.t.:

\[
\{u, v\} \in E_1 \iff \{\phi(u), \phi(v)\} \in E_2
\]

\(G_1 \) and \(G_2 \) are isomorphic: there exists an isomorphism of \(G_1 \) to \(G_2 \)

injective: \(\phi(u) = \phi(v) \Rightarrow u = v \)
Applications

- chemistry: check whether two given molecules are the same (e.g., to find a molecule in a database)
- automated circuit design: does the circuit layout match the initial design?
- as a subroutine in other algorithms (e.g., maintaining a set of subproblems that were already solved)

Outline

Introduction

Some facts about Graph Isomorphism

Proving Graph Isomorphism completeness

Efficient algorithm for isomorphism of trees

Iterative refinement heuristic

Open problems

Complexity of the Graph Isomorphism problem

not known to be in P: no polynomial time algorithm is known
best known worst-case runtime: \(O(c^{\sqrt{n \log n}}) \)
it is contained in NP: a given isomorphism can be checked in polynomial time
unlikely to be NP-complete: Schoening’s lowness proof
not known to be in \(\text{coNP} \): are there short proofs of non-isomorphism?

Theorem: If Graph Isomorphism is NP-complete then the polynomial hierarchy collapses. [Schoening]
Intermediate?

Ladner’s Theorem: If \(P \neq NP \) then there exist *intermediate* problems in \(NP \) that are neither in \(P \) nor \(NP \)-complete.

- problem constructed by Ladner’s Theorem is artificial
- however, many researchers believe Graph Isomorphism to be intermediate
 \(\Rightarrow \) introduced class of problems that are as hard as GI

A problem is **Graph Isomorphism complete** if it is equivalent to Graph Isomorphism under polynomial time many-one reductions.

Some GI-complete problems

- isomorphism of hypergraphs
- isomorphism of colored graphs
- isomorphism of finite automata
- checking whether a graph is self-complementary
- counting the number of isomorphisms between two graphs

in particular: Graph Isomorphism is GI-complete even when restricted to various simple graph classes

Outline

Introduction

Some facts about Graph Isomorphism

Proving Graph Isomorphism completeness

Efficient algorithm for isomorphism of trees

Iterative refinement heuristic

Open problems

GI-complete special cases of Graph Isomorphism

Graph Isomorphism on \(C \) graphs

Input: Two graphs \(G_1, G_2 \in C \).

Output: Are \(G_1 \) and \(G_2 \) isomorphic?

various graph classes \(C \) with GI-complete isomorphism problem:

- connected graphs, graphs of minimum degree at least \(c \),
- directed acyclic graphs,
- bipartite graphs, split graphs, chordal graphs,...
- on \(co-C \) if it is GI-complete on \(C \)

Concept: If there would be a polynomial-time algorithm for, e.g., bipartite graphs, that could be used to efficiently decide isomorphism of general graphs.
Simple hardness proofs

Theorem: Graph Isomorphism of connected graphs is GI-complete.

idea: add a universal vertex to both graphs

Lemma: Two graphs are isomorphic if and only if they are isomorphic after adding a universal vertex to both.

Theorem: Graph Isomorphism of graphs with minimum degree at least c is GI-complete.

idea: add ?? universal vertices to both graphs

GI-completeness of GI on bipartite graphs I

Given a graph $G = (V, E)$. Replace each edge $\{u, v\}$ of G by two edges $\{u, x_{u,v}\}$ and $\{x_{u,v}, v\}$ where $x_{u,v}$ is a new vertex.

“Subdividing all edges.”

Let $\pi(G)$ denote the obtained graph on $|V| + |E|$ vertices and $2|E|$ edges.

Lemma: Two graphs G_1 and G_2 of minimum degree at least 3 are isomorphic if and only if $\pi(G_1)$ and $\pi(G_2)$ are isomorphic.

GI-completeness of GI on bipartite graphs II

Lemma: Two graphs G_1 and G_2 of minimum degree at least 3 are isomorphic if and only if $\pi(G_1)$ and $\pi(G_2)$ are isomorphic.

Theorem: Graph Isomorphism of bipartite graphs is GI-complete.

Outline

Introduction

Some facts about Graph Isomorphism

Efficient algorithm for isomorphism of trees

Iterative refinement heuristic

Open problems
Graph classes with efficient isomorphism testing

- trees
- planar graphs
- interval graphs
- graphs of bounded genus
- graphs of bounded degree
- graphs of bounded treewidth
- colored graphs such that each vertex has either bounded degree or bounded co-degree into each color
- ...

Polynomial time algorithm for tree isomorphism

first try:
- (in both given trees) remove all leaves
- assign each vertex an integer (the color) = number of adjacent leaves that were removed
- recurse/iterate?

observation:
- must be able to handle colored input
- good: two vertices have the same color ⇒ lost the same number of leaves (don’t need to know how many!)

Polynomial time algorithm for tree isomorphism

Given two trees G_1 and G_2, decide whether they are isomorphic.

basic ideas:
- every nontrivial tree has (at least two) leaves
- proceed in rounds: each round remove all leaves
- use colors to encode the removed leaves

second try:
- given two colored trees both on n vertices ($\Rightarrow \leq n$ colors)
- remove all leaves
- $n' = \#$ of remaining vertices (return NO if different)
- assign each vertex an integer array (a_1, a_2, \ldots, a_n)
- $a_i = \#$ of adjacent leaves of color i that were removed
- replace the arrays by numbers $1, \ldots, n' < n$:
 - same array entries ⇒ same number
- repeat, while $n' > 2$
- if both trees are colored K_1 or K_2 then compare colors return: YES if same, NO if different
Outline

Introduction

Some facts about Graph Isomorphism

Proving Graph Isomorphism completeness

Efficient algorithm for isomorphism of trees

Iterative refinement heuristic

Open problems

Why heuristics?

- no algorithm is known that provably decides isomorphism in polynomial time
- but: Graph Isomorphism is easy on “most instances”
 - it often very easy to show that two graphs are not isomorphic:
 - different number of vertices or edges
 - different degree sequences
 - mismatch in any other isomorphism invariant property

Iterative refinement: Central idea

- for isomorphism \(\phi \) from \(G_1 \) to \(G_2 \) it must hold that
 \[
 \{ u, v \} \in E_1 \Leftrightarrow \{ \phi(u), \phi(v) \} \in E_2
 \]
 \Rightarrow \text{in particular } u \text{ has the same degree as } \deg(u)
- thus for any constant \(c \): vertices of degree \(c \) in \(G_1 \)
 must be mapped to vertices of degree \(c \) in \(G_2 \)
- the same is true for the number of neighbors that have
degree \(c \)...

of course we don’t have \(\phi \) yet, but we will use these
properties to find it (if it exists)

Iterative refinement: Central idea (again)

- partition the vertices of both graphs into classes
- each class of \(G_1 \) has a corresponding class in \(G_2 \)
- vertices of any class must be mapped to vertices of the
corresponding class
- refine classes as long as possible
- finally: check all possible mappings that remain
Iterative refinement: step by step

Given $G = (V, E)$ and $G' = (V', E')$
- return "non-isomorphic" if $|V| \neq |V'|$ or $|E| \neq |E'|$
- partition the vertices according to degree:

 $V = V_0 \cup V_1 \cup \ldots \cup V_{n-2} \cup V_{n-1}$
 $V' = V'_0 \cup V'_1 \cup \ldots \cup V'_{n-2} \cup V'_{n-1}$

 where $V_c = \{v \in V \mid \deg(v) = c\}$ (ditto for V'_c)
- clearly $\phi(V_c) = V'_c$ for any isomorphism of G_1 to G_2
- return "non-isomorphic" if $|V_c| \neq |V'_c|$ for any $c \in \{0, \ldots, n-1\}$

Iterative refinement: other properties

Other properties of vertices to refine by
- number of triangles that contain v (or any other such small graphs)
- shortest path distances from v (e.g., 5 vertices at distance one, 10 vertices at distance two, ...)
- trade-off: more time investment \Rightarrow possibly smaller sets

Does this heuristic work for colored graphs? – certainly!

Iterative refinement: Wrap-up

- partition the vertex sets of both graphs and refine as much as possible
- try all possible isomorphisms that map vertices from each set to vertices of the corresponding set in the second graph
- hopefully save a lot of time as compared to trying all $n!$ possible isomorphisms
- in practice this is highly successful (most of the time it will quickly discover a proof for non-isomorphism)
Outline

Introduction

Some facts about Graph Isomorphism

Proving Graph Isomorphism completeness

Efficient algorithm for isomorphism of trees

Iterative refinement heuristic

Open problems

Open problems

- is Graph Isomorphism in P?
- is Graph Isomorphism in coNP?
- assuming $P \neq NP$, can one show $GI \notin P$?