Treewidth

Algorithms and Networks
Overview

- Historic introduction: Series parallel graphs
- Dynamic programming on trees
- Dynamic programming on series parallel graphs
- Treewidth
- Dynamic programming on graphs of small treewidth
- Finding tree decompositions
Computing the Resistance With the Laws of Ohm

\[R = R_1 + R_2 \]

Two resistors in series

\[\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \]

Two resistors in parallel

1789-1854
Repeated use of the rules

\[
\frac{1}{6} + \frac{1}{2} = \frac{1}{1.5}
\]
\[
1.5 + 1.5 + 5 = 8
\]
\[
1 + 7 = 8
\]
\[
\frac{1}{8} + \frac{1}{8} = \frac{1}{4}
\]

Has resistance 4
A tree structure
Carry on!

- Internal structure of graph can be forgotten once we know essential information about it!

\[
\frac{1}{4} + \frac{1}{4} = \frac{1}{2}
\]
Using tree structures for solving hard problems on graphs

- Network is ‘series parallel graph’
- 196*, 197*: many problems that are hard for general graphs are easy for
 - Trees
 - Series parallel graphs
- Many well-known problems
 - Linear / polynomial time computable
 - e.g.: NP-complete
Weighted Independent Set

- Independent set: set of vertices that are pairwise non-adjacent.
- **Weighted independent set**
 - **Given**: Graph $G=(V,E)$, weight $w(v)$ for each vertex v.
 - **Question**: What is the maximum total weight of an independent set in G?
- **NP-complete**
Weighted Independent Set on Trees

• On trees, this problem can be solved in linear time with dynamic programming.
• Choose root r. For each v, $T(v)$ is subtree with v as root.
• Write

$$A(v) = \text{maximum weight of independent set } S \text{ in } T(v)$$
$$B(v) = \text{maximum weight of independent set } S \text{ in } T(v), \text{ such that } v \not\in S.$$
Recursive formulations

- If \(v \) is a leaf:

 - \(A(v) = w(v) \)

 - \(B(v) = 0 \)

- If \(v \) has children \(x_1, \ldots, x_r \):

 \[
 A(v) = \max \{ w(v) + B(x_1) + \ldots + B(x_r), \\
 A(x_1) + \ldots A(x_r) \}
 \]

 \[
 B(v) = A(x_1) + \ldots A(x_r)
 \]
Linear time algorithm

• Compute $A(v)$ and $B(v)$ for each v, bottom-up.
 – E.g., in postorder

• Constructing corresponding sets can also be done in linear time.
Second example: Weighted dominating set

- A set of vertices S is *dominating*, if each vertex in G belongs to S or is adjacent to a vertex in S.
- **Problem**: given a graph G with vertex weights, what is the minimum total weight of a dominating set in G?
- Again, NP-complete, but linear time on trees.
Subproblems

- $C(v) =$ minimum weight of dominating set S of $T(v)$
- $D(v) =$ minimum weight of dominating set S of $T(v)$ with $v \in S$.
- $E(v) =$ minimum weight of a set S of $T(v)$ that dominates all vertices, except possibly v.
Recursive formulations

- If v is a leaf, ...
- If v has children x_1, \ldots, x_r:
 - $C(v) =$ the minimum of:
 - $w(v) + E(x_1) + \ldots + E(x_r)$
 - $C(x_1) + \ldots + C(x_{i-1}) + D(x_i) + C(x_{i+1}) + \ldots + C(x_r)$, over all i, $1 \leq i \leq r$.
 - $D(v) = w(v) + E(x_1) + \ldots + E(x_r)$
 - $E(v) = \min \{ w(v) + E(x_1) + \ldots + E(x_r), C(x_1) + \ldots + C(x_r) \}$
Gives again a linear time algorithm

• Compute bottom up (e.g., postorder), and use another type of dynamic programming for the values $C(\nu)$.

• Constructing sets can also be done in linear time
Generalizing to series parallel graphs

- A 2-terminal graph is a graph $G = (V, E)$ with two special vertices s and t, its *terminals*.
- A 2-terminal (multi)-graph is *series parallel*, when it is:
 - A single edge (s, t).
 - Obtained by *series composition* of 2 series parallel graphs
 - Obtained by *parallel composition* of 2 series parallel graphs
Series composition

\[s_1 s_2 = t_1 + t_2 \]
Parallel composition

\[s_1 \oplus s_2 = s_2 \oplus s_1 \]

\[t_1 = t_2 \]
Series Parallel Graphs have an SP-tree
\(G(i) \)

- Associate to each node \(i \) of SP tree a 2-terminal graph \(G(i) \).
Maximum weighted independent set for series parallel graphs

- $G(i)$, say with terminals s and t
- $AA(i) = \text{maximum weight of independent set } S \text{ of } G(i) \text{ with } s \in S, t \in S$
- $BA(i) = \text{maximum weight of independent set } S \text{ of } G(i) \text{ with } s \not\in S, t \in S$
- $AB(i) = \text{maximum weight of independent set } S \text{ of } G(i) \text{ with } s \in S, t \not\in S$
- $BB(i) = \text{maximum weight of independent set } S \text{ of } G(i) \text{ with } s \not\in S, t \not\in S$
Maximum weighted independent set of series parallel graphs 2

- Computing AA, AB, BA, BB for
 - Leaves of SP-tree: trivial
 - Series, parallel composition: case analysis, using values for sub-sp-graphs $G(i_1), G(i_2)$
 - E.g., series operation, s' terminal between i_1 and i_2
 - $AA(i) = \max\{AA(i_1) + AA(i_2) - w(s'), AB(i_1) + BA(i_2)\}$

- $O(1)$ time per node of SP-tree: $O(n)$ total.
Many generalizations

• Many other problems
• Other classes of graphs to which we can assign a *tree-structure*, including
 – Graphs of treewidth k, for small k.
Idea of treewidth (intuition)

- \(k \)-terminal graph: \(G = (V, E, T) \quad |T| = k \)
- Operations on \(l \)-terminal graphs with \(l \leq k \)
 - Take a 1-terminal graph with one vertex
 - Add a new terminal vertex with edges only to (some of) the terminal vertices
 - Make a terminal vertex `normal`
 - Join two \(k \)-terminal graphs by `gluing`
- Treewidth is (plus/minus 1) number of terminals needed to build graph
Join ("gluing")

\[\text{treewidth} = 25\]
A tree decomposition:

- Tree with a vertex set associated to every node.
- For all edges \(\{v, w\} \in E \): there is a set containing both \(v \) and \(w \).
- For every \(v \in V \): the nodes that contain \(v \) form a connected subtree.
Tree decomposition

A tree decomposition:

- Tree with a vertex set associated to every node.
- For all edges \(\{v, w\} \in E \): there is a set containing both \(v \) and \(w \).
- For every \(v \in V \): the nodes that contain \(v \) form a connected subtree.
Treewidth (definition)

- **Width** of tree decomposition:
 \[\max_{i \in I} |X_i| - 1 \]
- **Treewidth** of graph \(G \): \(tw(G) = \) minimum width over all tree decompositions of \(G \).
Some graphs have small treewidth

- Appearing in some applications (e.g., probabilistic networks)
- Trees have treewidth 1
- Series Parallel graphs have treewidth 2.
- ...
Trees have treewidth one

- Choose a root r
- Take $X_r = \{r\}$, and for each other node i: $X_i = \{i, \text{parent}(i)\}$
- T with these bags gives a tree decomposition of width 2
Algorithms using tree decompositions

• Step 1: Find a tree decomposition of width bounded by some small k.
 – Heuristics.
 – $O(f(k)n)$ in theory.
 – Fast $O(n)$ algorithms for $k = 2, k = 3$.
 – By construction, e.g., for trees, sp-graphs.

• Step 2. Use dynamic programming, bottom-up on the tree.
Separator property

If both v and w not in X_i, then v and w are not adjacent.
Nice tree decompositions

• Rooted tree, and four types of nodes i:
 – **Leaf**: leaf of tree with $|X_i| = 1$.
 – **Join**: node with two children j, j' with $X_i = X_j = X_{j'}$.
 – **Introduce**: node with one child j with $X_i = X_j \cup \{v\}$ for some vertex v
 – **Forget**: node with one child j with $X_i = X_j - \{v\}$ for some vertex v

• There is always a nice tree decomposition with the same width.
Transformation to a nice tree decomposition

- Step 1: Choose an arbitrary vertex as root
- Step 2: Ensure that each node has at most 2 children:
Transformation to a nice tree decomposition

- Step 3: Turn binary nodes in join nodes
Transformation to a nice tree decomposition

• Step 4: Nodes with one child get a series of introduce and forget nodes

Above, introduce vertices in X_i that are not in X_j

Below, forget vertices in X_j that are not in X_i
Transformation to a nice tree decomposition

- Step 5: Ensure that leaf bags have size 1, by adding introduce nodes:

\[\begin{align*}
&v_1 \\
v_2 \\
&\vdots \\
v_r \\
&\vdots \\
&\vdots \\
&v_1 \\
v_2 \\
&v_1 \\
&v_1
\end{align*} \]

Done!
Define $G(i)$

- Nice tree decomposition.
- For each node i, $G(i)$ subgraph of G, formed by all nodes in sets X_j, with $j = i$ or j a descendant of i in tree.
 - Notate: $G(i) = (V(i), E(i))$.
Leaf nodes

• Let i be a leaf node. Say $X_i = \{v\}$.

$G(i)$ is a graph with one vertex
Join nodes

• Let i be a join node with children j_1, j_1.
• Example of how $G(i)$ is build from $G(j_1)$ and $G(j_1)$:
Introduce nodes

• Let \(i \) be a node with child \(j \), with \(X_i = X_j \cup \{v\} \).

• One new `terminal’ vertex which can only be adjacent to other terminal vertices
Forget nodes

- Let i be a node with child j, with $X_i = X_j - \{v\}$.
- Same graph; one terminal vertex now is a normal vertex.
Maximum weighted independent set on graphs with treewidth \(k \)

- For node \(i \) in tree decomposition, \(S \subseteq X_i \) write
 - \(R(i, S) = \) maximum weight of independent set \(W \) of \(G(i) \) with \(W \cap X_i = S \),
 - \(-\infty \) if such \(W \) does not exist

- We now see how to compute a table \(R(i, \ldots) \) for all types of nodes
Leaf nodes

• Let i be a leaf node. Say $X_i = \{v\}$.
• $R(i, \{v\}) = w(v)$
• $R(i, \emptyset) = 0$

$G(i)$ is a graph with one vertex
Join nodes

- Let i be a join node with children j_1, j_2.
- $R(i, S) = R(j_1, S) + R(j_2, S) - w(S)$.
Introduce nodes

• Let i be a node with child j, with $X_i = X_j \cup \{v\}$.
• Let $S \subseteq X_j$.
• $R(i, S) = R(j, S)$.
• If v not adjacent to vertex in S:
 $R(i, S \cup \{v\}) = R(j, S) + w(v)$
• If v adjacent to vertex in S:
 $R(i, S \cup \{v\}) = -\infty$.

Forget nodes

- Let i be a node with child j, with $X_i = X_j - \{v\}$.
- Let $S \subseteq X_i$.
- $R(i, S) = \max (R(j, S), R(j, S \cup \{v\}))$
Maximum weighted independent set on graphs with treewidth \(k \)

- For node \(i \) in tree decomposition, \(S \subseteq X_i \) write
 - \(R(i, S) = \) maximum weight of independent set \(W \) of \(G(i) \)
 with \(W \cap X_i = S \), \(-\infty\) if such \(W \) does not exist
- Compute for each node \(i \), a table with all values \(R(i, \ldots) \).
- Each such table can be computed in \(O(2^k) \) time when treewidth at most \(k \).
- Gives \(O(n) \) algorithm when treewidth is (small) constant.
Frequency assignment problem

• **Given:**
 – *Graph* $G = (V, E)$
 – *Frequency set* $F(v) \subseteq \mathbb{N}$ for all $v \in V$
 – *Cost function*
 - $c(e, r, s)$, $e = \{v, w\}$, r a frequency of v, s a frequency of w

• **Question**
 – Find a function g with
 - For all $v \in V$: $g(v) \in F(v)$
 - The total sum over all edges $e = \{v, w\}$ of $c(e, g(v), g(w))$ is as small as possible
Frequency assignment when treewidth is small

- Suppose sets $F(v)$ are *small*
- Suppose G has small treewidth
- Algorithm exploits tree decomposition
 - What tables are we computing?
 - Leaf: trivial
 - Introduce: ...
 - Forget: projection
 - Join: sum but subtract double terms
General method

• Compute a tree decomposition
 – E.g., with minimum degree heuristic
 – Make it nice
 – Use dynamic programming

• Works for many problems
 – Courcelle: those that can be formulated in monadic second order logic
 – Practical: TSP, frequency assignment, problems on planar graphs like dominating set, probabilistic inference
A lemma

- Let \((\{X_i \mid i \in I\}, T) \) be a tree decomposition of \(G \). Let \(Z \) be a clique in \(G \). Then there is a \(j \in I \) with \(Z \subseteq X_j \).

 - Proof: Take arbitrary root of \(T \). For each \(v \in Z \), look at highest node containing \(v \). Look at such highpoint of maximum depth.
The minimum degree heuristic

- If G has one vertex: take a tree decomposition with one bag. Otherwise
- Recursive step:
 - Take vertex \(v \) of minimum degree
 - Make neighbors of \(v \) a clique
 - Remove \(v \), and recurse on rest of G
 - Add \(v \) with neighbors to tree decomposition

A heuristic for treewidth
Works often well

In practice: iterative, not recursive
Other heuristics

• Minimum fill-in heuristic
 – Similar to minimum degree heuristic, but takes vertex with smallest fill-in:
 • Number of edges that must be added when the neighbours of \(v \) are made a clique

• Other choices of vertices, refining, using separators, …
Representation as permutation

• A correspondence between tree decompositions and permutations of the vertices
 – Repeat: remove superfluous leaf bag, or take vertex that appears in 1 leaf bag and no other bag
 – Make neighbours of $v = \pi(1)$ into a clique; recursively make tree decomposition of graph $- v$; add bag with v and neighbours

• Used in heuristics, and local search methods (e.g., taboo search, simulated annealing) and genetic algorithms
Connection to Gauss eliminating

- Consider Gauss elimination on a symmetric matrix
- For n by n matrix M, let G_M be the graph with n vertices, and edge (i,j) if $M_{ij} \neq 0$
- If we eliminate a row and corresponding column, effect on G is:
 - Make neighbors of v a clique
 - Remove v
Application: Probabilistic networks

• Lauritzen-Spiegelhalter algorithm for inference on probabilistic networks (belief networks) uses a tree decomposition of the moralized form of the network

• Underlying several modern decision support networks
Conclusions

- Dynamic programming for graphs with tree-like structure
- Works for a large collection of problems, as long as there is (and we can find) such a structure...